Advertisement

Characterization of Unlabeled Radial Level Planar Graphs

(Extended Abstract)
  • J. Joseph Fowler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)

Abstract

Suppose that an n-vertex graph has a distinct labeling with the integers {1, . . . ,n}. Such a graph is radial level planar if it admits a crossings-free drawing under two constraints. First, each vertex lies on a concentric circle such that the radius of the circle equals the label of the vertex. Second, each edge is drawn with a radially monotone curve. We characterize the set of unlabeled radial level planar (URLP) graphs that are radial level planar in terms of 7 and 15 forbidden subdivisions depending on whether the graph is disconnected or connected, respectively. We also provide linear-time drawing algorithms for any URLP graph.

References

  1. 1.
    Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and embedding in linear time. Journal of Graph Algorithms and Applications 9(1), 53–97 (2005)MATHMathSciNetGoogle Scholar
  2. 2.
    Brandes, U., Kenis, P., Wagner, D.: Communicating centrality in policy network drawings. IEEE Transactions on Visualization and Computer Graphics 09(2), 241–253 (2003)CrossRefGoogle Scholar
  3. 3.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. Computational Geometry: Theory and Applications 36(2), 117–130 (2007)MATHMathSciNetGoogle Scholar
  4. 4.
    Cappos, J., Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Simultaneous graph embedding with bends and circular arcs. Computational Geometry: Theory and Applications 42(2), 173–182 (2009)MATHMathSciNetGoogle Scholar
  5. 5.
    Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 367–379. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. Computational Geometry: Theory and Applications 42(7), 704–721 (2009)MATHMathSciNetGoogle Scholar
  8. 8.
    Fowler, J.J.: Characterization of unlabeled radial level planar graphs. Technical Report TR09-03, University of Arizona (2009), http://ulp.cs.arizona.edu/TR09-03.pdf
  9. 9.
    Fowler, J.J.: Unlabeled Level Planarity. PhD thesis, University of Arizona (2009), http://ulp.cs.arizona.edu/ulp-thesis.pdf
  10. 10.
    Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled planar graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 37–49. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Jünger, M., Leipert, S.: Level planar embedding in linear time. Journal of Graph Algorithms and Applications 6(1), 67–113 (2002)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • J. Joseph Fowler
    • 1
  1. 1.Department of Computer ScienceUniversity of Arizona 

Personalised recommendations