Skip to main content

On Hierarchical Error Estimators for Time-Discretized Phase Field Models

  • Conference paper
  • First Online:

Abstract

We suggest hierarchical a posteriori error estimators for time-discretized Allen–Cahn and Cahn–Hilliard equations with logarithmic potential and investigate their robustness numerically. We observe that the associated effectivity ratios seem to saturate for decreasing mesh size and are almost independent of the temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and J.T. Oden. A posteriori error estimation in FE analysis. Wiley, NY, 2000

    Google Scholar 

  2. R.E. Bank and R.K. Smith. A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal., 30:921–935, 1993

    Article  MATH  MathSciNet  Google Scholar 

  3. J.W. Barrett and J.F. Blowey. Finite element approximation of an Allen-Cahn/Cahn-Hilliard system. IMA J. Numer. Anal., 22(1):11–71, 2002

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Bartels and R. Müller. Optimal and robust a posteriori error estimates in L (L 2) for the approximation of Allen-Cahn equations past singularities. Preprint, Uni Bonn, 2009

    Google Scholar 

  5. L. Baňas and R. Nürnberg. A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy. Math. Model. Numer. Anal., 43:1003–1026, 2009

    Article  MATH  Google Scholar 

  6. J.F. Blowey and C.M. Elliott. The Cahn-Hilliard gradient theory for phase separation with non–smooth free energy II: Numerical analysis. Euro. J. Appl. Math., 3:147–179, 1992

    Article  MATH  MathSciNet  Google Scholar 

  7. F.A. Bornemann, B. Erdmann, and R. Kornhuber. A posteriori error estimates for elliptic problems in two and three space dimensions. SIAM J. Numer. Anal., 33:1188–1204, 1996

    Article  MATH  MathSciNet  Google Scholar 

  8. M.I.M. Copetti and C.M. Elliott. Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math., 63:39–65, 1992

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Deckelnick, G. Dziuk, and C.M. Elliott. Computation of geometric partial differential equations and mean curvature flow. Acta Numer., 14:139–232, 2005

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Eng., 1:3–35, 1989

    Article  MATH  Google Scholar 

  11. W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal., 33:1106–1124, 1996

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Dörfler and R.H. Nochetto. Small data oscillation implies the saturation assumption. Numer. Math., 91:1–12, 2002

    Article  MATH  MathSciNet  Google Scholar 

  13. X. Feng and H. Wu. A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow. J. Comput. Math., 26:767–796, 2008

    MATH  MathSciNet  Google Scholar 

  14. R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer, Berlin, 1984

    MATH  Google Scholar 

  15. C. Gräser. Convex Minimization and Phase Field Models. PhD thesis, FU Berlin, to appear

    Google Scholar 

  16. C. Gräser and R. Kornhuber. On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints. In O.B. Widlund and D.E. Keyes, editors, Domain Decomposition Methods in Science and Engineering XVI, pages 91–102. Springer, Berlin, 2006

    Google Scholar 

  17. R.H.W. Hoppe and R. Kornhuber. Adaptive multilevel-methods for obstacle problems. SIAM J. Numer. Anal., 31(2):301–323, 1994

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Kessler, R. Nochetto, and A. Schmidt. A posteriori error control for the Allen-Cahn problem: circumventing Gronwal’s inequality. M2AN, 38:129–142, 2004

    Google Scholar 

  19. R. Kornhuber. A posteriori error estimates for elliptic variational inequalities. Comput. Math. Appl., 31:49–60, 1996

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Kornhuber and Q. Zou. Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems. Math. Comp., to appear

    Google Scholar 

  21. O. Sander. Multi-dimensional coupling in a human-knee model. PhD thesis, FU Berlin, 2008

    Google Scholar 

  22. K.G. Siebert and A. Veeser. A unilaterally constrained quadratic minimization with adaptive finite elements. SIAM J. Optim., 18:260–289, 2007

    Article  MATH  MathSciNet  Google Scholar 

  23. O.C. Zienkiewicz, J.P. De S.R. Gago, and D.W. Kelly. The hierarchical concept in finite element analysis. Comput. Struct., 16:53–65, 1983

    Google Scholar 

  24. Q. Zou, A. Veeser, R. Kornhuber, and C. Gräser. Hierarchical error estimates for the energy functional in obstacle problems. Preprint 575, Matheon Berlin, 2009

    Google Scholar 

Download references

Acknowledgement

This work was supported by the DFG Research Center Matheon

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Gräser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gräser, C., Kornhuber, R., Sack, U. (2010). On Hierarchical Error Estimators for Time-Discretized Phase Field Models. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds) Numerical Mathematics and Advanced Applications 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11795-4_42

Download citation

Publish with us

Policies and ethics