Advertisement

A Posteriori Error Bounds for Discontinuous Galerkin Methods for Quasilinear Parabolic Problems

  • Emmanuil H. GeorgoulisEmail author
  • Omar Lakkis
Conference paper

Abstract

We derive a posteriori error bounds for a quasilinear parabolic problem, which is approximated by the hp-version interior penalty discontinuous Galerkin method (IPDG). The error is measured in the energy norm. The theory is developed for the semidiscrete case for simplicity, allowing to focus on the challenges of a posteriori error control of IPDG space-discretizations of strictly monotone quasilinear parabolic problems. The a posteriori bounds are derived using the elliptic reconstruction framework, utilizing available a posteriori error bounds for the corresponding steady-state elliptic problem.

Keywords

Posteriori Error Discontinuous Galerkin Discontinuous Galerkin Method Posteriori Error Estimation Interior Penalty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), pp. 742–760zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), pp. 45–59zbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Becker, P. Hansbo, and M. G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 723–733zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations, Math. Comp., 76 (2007), pp. 1119–1140 (electronic)Google Scholar
  5. 5.
    Y. Chen and J. Yang, A posteriori error estimation for a fully discrete discontinuous Galerkin approximation to a kind of singularly perturbed problems, Finite Elem. Anal. Des., 43 (2007), pp. 757–770CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Ern and J. Proft, A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equations, Appl. Math. Lett., 18 (2005), pp. 833–841zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Ern and M. Vohralík, A posteriori error estimation based on potential and flux reconstruction for the heat equation (Submitted)Google Scholar
  8. 8.
    E. H. Georgoulis and O. Lakkis, A posteriori error control for discontinuous Galerkin methods for parabolic problems (Submitted)Google Scholar
  9. 9.
    P. Houston, J. Robson, and E. Süli, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: The scalar case, IMA J. Numer. Anal., 25 (2005), pp. 726–749zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Houston, D. Schötzau, and T. P. Wihler, Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci., 17 (2007), pp. 33–62zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Houston, E. Süli, and T. P. Wihler, A posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems, IMA J. Numer. Anal. (to appear)Google Scholar
  12. 12.
    O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), pp. 2374–2399 (electronic)Google Scholar
  13. 13.
    O. A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM J. Numer. Anal., 45 (2007), pp. 641–665 (electronic)Google Scholar
  14. 14.
    O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp., 75 (2006), pp. 1627–1658 (electronic)Google Scholar
  15. 15.
    C. Makridakis and R. H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41 (2003), pp. 1585–1594 (electronic)Google Scholar
  16. 16.
    S. Sun and M. F. Wheeler, L 2 (H 1 ) norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems, J. Sci. Comput., 22/23 (2005), pp. 501–530Google Scholar
  17. 17.
    M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15 (1978), pp. 152–161zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J.-M. Yang and Y.-P. Chen, A unified a posteriori error analysis for discontinuous Galerkin approximations of reactive transport equations, J. Comput. Math., 24 (2006), pp. 425–434zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of LeicesterLeicesterUK
  2. 2.Department of MathematicsUniversity of SussexFalmerUK

Personalised recommendations