Skip to main content

Stabilized Finite Element Methods with Shock-Capturing for Nonlinear Convection–Diffusion-Reaction Models

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications 2009

Abstract

In this work stabilized higher-order finite element approximations of convection-diffusion-reactions models with nonlinear reaction mechanisms are studied. Streamline upwind Petrov–Galerkin (SUPG) stabilization together with anisotropic shock-capturing as an additional stabilization in crosswind-direction is used. The parameter design of the scheme is described precisely and error estimates are provided. Theoretical results are illustrated by numerical computations. The work extends former investigations for linear problems to more realistic nonlinear models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bause, Analysis of stabilized higher-order finite element approximation of nonstationary and nonlinear convection-diffusion-reaction equations, to appear (2010), 1–32

    Google Scholar 

  2. M. Bause, P. Knabner, Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping, Comput. Visual. Sci., 7 (2004), 61–78

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Codina, O. Soto, Finite element implementation of two-equation and algebraic stress turbulence models for steady incompressible flows, Int. J. Numer. Meth. Fluids, 90 (1999), 309–343

    Article  Google Scholar 

  4. T. Huge, M. Mallet, A. Mizukami, A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Meth. Appl. Mech. Eng., 54 (1986), 341–355

    Google Scholar 

  5. V. John, P. Knobloch, On the performance of SOLD methods for convection-diffusion problems with interior layers, Int. J. Comp. Sci. Math., 1 (2007), 245–258

    Article  MATH  MathSciNet  Google Scholar 

  6. V. John, E. Schmeyer, Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Eng., 198 (2008), 475–494

    Article  MathSciNet  Google Scholar 

  7. T. Knopp, Stabilized finite element methods with shock capturing for advection-diffusion problems, Comput. Meth. Appl. Mech. Eng., 191 (2002), 2997–3013

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Kuzmin, S. Turek, Flux correction tools for finite elements, J. Comput. Phys., 175 (2002), 525–558

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Lube, G. Rapin, Residual-based stabilized higher order FEM for advection-dominated problems, Comput. Methods Appl. Mech. Eng., 195 (2006), 4124–4138

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Schmidt, K. G. Siebert, Design of Adaptive Finite Element Software, Springer, Berlin, 2005

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bause, M. (2010). Stabilized Finite Element Methods with Shock-Capturing for Nonlinear Convection–Diffusion-Reaction Models. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds) Numerical Mathematics and Advanced Applications 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11795-4_12

Download citation

Publish with us

Policies and ethics