Advertisement

A Query-by-Example Content-Based Image Retrieval System of Non-melanoma Skin Lesions

  • Lucia Ballerini
  • Xiang Li
  • Robert B. Fisher
  • Jonathan Rees
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5853)

Abstract

This paper proposes a content-based image retrieval system for skin lesion images as a diagnostic aid. The aim is to support decision making by retrieving and displaying relevant past cases visually similar to the one under examination. Skin lesions of five common classes, including two non-melanoma cancer types are used. Colour and texture features are extracted from lesions. Feature selection is achieved by optimising a similarity matching function. Experiments on our database of 208 images are performed and results evaluated.

Keywords

Feature Selection Image Retrieval Query Image Actinic Keratosis CBIR System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: Current techniques, prominsign directions, and open issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)CrossRefGoogle Scholar
  2. 2.
    Smeulders, A.W.M., Member, S., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  3. 3.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2), 1–5 (2008)CrossRefGoogle Scholar
  4. 4.
    Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image retrieval systems in medical applications - clinical benefits and future directions. International Journal of Medical Informatics 73, 1–23 (2004)CrossRefGoogle Scholar
  5. 5.
    Celebi, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V.: Lesion border detection in dermoscopy images. Computerized Medical Imaging and Graphics 33(2), 148–153 (2009)CrossRefGoogle Scholar
  6. 6.
    Wollina, U., Burroni, M., Torricelli, R., Gilardi, S., Dell’Eva, G., Helm, C., Bardey, W.: Digital dermoscopy in clinical practise: a three-centre analysis. Skin Research and Technology 13, 133–142 (2007)CrossRefGoogle Scholar
  7. 7.
    Seidenari, S., Pellacani, G., Pepe, P.: Digital videomicroscopy improves diagnostic accuracy for melanoma. Journal of the American Academy of Dermatology 39(2), 175–181 (1998)CrossRefGoogle Scholar
  8. 8.
    Lee, T.K., Claridge, E.: Predictive power of irregular border shapes for malignant melanomas. Skin Research and Technology 11(1), 1–8 (2005)CrossRefGoogle Scholar
  9. 9.
    Schmid-Saugeons, P., Guillod, J., Thiran, J.P.: Towards a computer-aided diagnosis system for pigmented skin lesions. Computerized Medical Imaging and Graphics 27, 65–78 (2003)CrossRefGoogle Scholar
  10. 10.
    Maglogiannis, I., Pavlopoulos, S., Koutsouris, D.: An integrated computer supported acquisition, handling, and characterization system for pigmented skin lesions in dermatological images. IEEE Transactions on Information Technology in Biomedicine 9(1), 86–98 (2005)CrossRefGoogle Scholar
  11. 11.
    Celebi, M.E., Kingravi, H.A., Uddin, B., Iyatomi, H., Aslandogan, Y.A., Stoecker, W.V., Moss, R.H.: A methodological approach to the classification of dermoscopy images. Computerized Medical Imaging and Graphics 31(6), 362 (2007)CrossRefGoogle Scholar
  12. 12.
    Chung, S.M., Wang, Q.: Content-based retrieval and data mining of a skin cancer image database. In: International Conference on Information Technology: Coding and Computing (ITCC 2001), pp. 611–615. IEEE Computer Society, Los Alamitos (2001)CrossRefGoogle Scholar
  13. 13.
    Celebi, M.E., Aslandogan, Y.A.: Content-based image retrieval incorporating models of human perception. In: International Conference on Information Technology: Coding and Computing, vol. 2, p. 241 (2004)Google Scholar
  14. 14.
    Rahman, M.M., Desai, B.C., Bhattacharya, P.: Image retrieval-based decision support system for dermatoscopic images. In: IEEE Symposium on Computer-Based Medical Systems, pp. 285–290. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  15. 15.
    Dorileo, E.A.G., Frade, M.A.C., Roselino, A.M.F., Rangayyan, R.M., Azevedo-Marques, P.M.: Color image processing and content-based image retrieval techniques for the analysis of dermatological lesions. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2008), August 2008, pp. 1230–1233 (2008)Google Scholar
  16. 16.
    Dermnet: the dermatologist’s image resource, Dermatology Image Altas (2007), http://www.dermnet.com/
  17. 17.
    Cohen, B.A., Lehmann, C.U.: Dermatlas (2000-2009) Dermatology Image Altas, http://dermatlas.med.jhmi.edu/derm/
  18. 18.
    Johr, R.H.: Dermoscopy: alternative melanocytic algorithms–the abcd rule of dermatoscopy, menzies scoring method, and 7-point checklist. Clinics in Dermatology 20(3), 240–247 (2002)CrossRefGoogle Scholar
  19. 19.
    Ohta, Y.I., Kanade, T., Sakai, T.: Color information for region segmentation. Computer Graphics and Image Processing 13(1), 222–241 (1980)CrossRefGoogle Scholar
  20. 20.
    Haralick, R.M., Shanmungam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics 3(6), 610–621 (1973)CrossRefGoogle Scholar
  21. 21.
    Unser, M.: Sum and difference histograms for texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(1), 118–125 (1986)CrossRefGoogle Scholar
  22. 22.
    Munzenmayer, C., Wilharm, S., Hornegger, J., Wittenberg, T.: Illumination invariant color texture analysis based on sum- and difference-histograms. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 17–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lucia Ballerini
    • 1
  • Xiang Li
    • 1
  • Robert B. Fisher
    • 1
  • Jonathan Rees
    • 2
  1. 1.School of InformaticsUniversity of EdinburghUK
  2. 2.DermatologyUniversity of EdinburghUK

Personalised recommendations