Skip to main content

Five Steps in Latent Curve and Latent Change Score Modeling with Longitudinal Data

Abstract

This paper describes a set of applications of one class of longitudinal growth analysis - latent curve (LCM) and latent change score (LCS) analysis using structural equation modeling (SEM) techniques. These techniques are organized in five sections based on Baltes & Nesselroade (1979). (1) Describing the observed and unobserved longitudinal data. (2) Characterizing the developmental shape of both individuals and groups. (3) Examining the predictors of individual and group differences in developmental shapes. (4) Studying dynamic determinants among variables over time. (5) Studying group differences in dynamic determinants among variables over time. To illustrate all steps, we present SEM analyses of a relatively large set of data from the National Longitudinal Survey of Youth (NLSY). The inclusion of all five aspects of latent curve modeling is not often used in longitudinal analyses, so we discuss why more efforts to include all five are needed in developmental research.

Keywords

  • Structural Equation Modeling
  • Reading Comprehension
  • Antisocial Behavior
  • Latent Curve
  • Latent Growth Curve

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-11760-2_8
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-11760-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development (pp. 1-39). New York: Academic Press.

    Google Scholar 

  • Boker, S. M., & McArdle, J. J. (1995). Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. Experimental Aging Research, 21, 77-93.

    CrossRef  Google Scholar 

  • Browne, M., & du Toit, S. H. C. (1991). Models for learning data. In L. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 47-68). Washington, DC: APA Press.

    Google Scholar 

  • Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage.

    Google Scholar 

  • Cattell, R. B. (1980). The separation and evaluation of personal and environmental contributions to behavior by the person-centered model (PCER). Multivariate Behavioral Research, 15, 371-402.

    CrossRef  Google Scholar 

  • Cnaan, A., Laird, N. M., & Slasor, P. (1997). Using the general linear mixed model to analyze unbalanced repeated measures and longitudinal data. Statistics in Medicine, 16, 2349-2380.

    CrossRef  Google Scholar 

  • Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation design and analysis issues for field settings. Skokie, IL: Rand-McNally.

    Google Scholar 

  • Cudeck, R., & Klebe, K. J. (2002). Multiphase mixed-effects models for repeated measures data. Psychological Methods, 7, 41-63.

    CrossRef  Google Scholar 

  • Dunn, L. M., & Markwardt, F. C. (1970). Peabody Individual Achievement Test manual. Circle Pines, MN: American Guidance Service.

    Google Scholar 

  • Grimm, K. J. (2007). Multivariate longitudinal methods for studying developmental relationships between depression and academic achievement. International Journal of Behavioral Development, 31, 328-339.

    CrossRef  Google Scholar 

  • Grimm, K. J., & McArdle, J. J. (2005). A note on the computer generation of structural expectations. In F. Dansereau & F. Yammarino (Eds.), Multi-level issues in strategy and research methods (Volume 4 of Research in multi-level issues) (pp. 335-372). Amsterdam: JAI Press/Elsevier.

    Google Scholar 

  • Hamagami, F., & McArdle, J. J. (2007). Dynamic extensions of latent difference score models. In S. M. Boker & M. J. Wenger, Data analytic techniques for dynamical systems. Notre Dame series on quantitative methodology (pp. 47-85). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Horn, J. L. (1973). On extension analysis and its relation to correlations between variables and factor scores. Multivariate Behavioral Research, 8, 477-489.

    CrossRef  Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (1979). Advances in factor analysis and structural equation models. Cambridge, MA: Abt Books.

    MATH  Google Scholar 

  • Laird, N. M., & Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38, 963-974.

    CrossRef  MATH  Google Scholar 

  • Littell, R. C., Miliken, G. A., Stoup, W. W., & Wolfinger, R. D. (1996). SAS system for mixed models. Cary, NC: SAS institute.

    Google Scholar 

  • Little, R. J. A. (1995). Modeling the dropout mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Magnussen, D, (2003). Person-Centered methodology. In S. C. Peck & R. W. Roeser (Eds.), Person-centered approaches to studying development in context. San Francisco: Jossey-Bass.

    Google Scholar 

  • McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology: Vol. 2 (pp. 561-614). New York: Plenum.

    Google Scholar 

  • McArdle, J. J. (1989). Structural modeling experiments using multiple growth functions. In P. Ackerman, R. Kanfer & R. Cudeck (Eds.), Learning and individual differences: Abilities, motivation, and methodology (pp. 71-117). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • McArdle, J. J. (1994). Structural factor analysis experiments with incomplete data. Multivariate Behavioral Research, 29, 409-454.

    CrossRef  Google Scholar 

  • McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic structural analyses. In R. Cudeck, S. du Toit & D. Sörbom (Eds.), Structural equation modeling: Present and future (pp. 342-380). Lincolnwood, IL: Scientific Software International.

    Google Scholar 

  • McArdle, J. J. (2005). The development of the RAM rules for latent variable structural equation modeling. In J. J. McArdle & A. Maydeu-Olivares (Eds.), Contemporary psychometrics: A festschrift for Roderick P. McDonald (pp. 225-273). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • McArdle, J. J. (2007). Dynamic structural equation modeling in longitudinal experimental studies. In K. van Montfort, J. Oud & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences (pp. 159-188). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • McArdle, J. J. (2009). Latent variable modeling of differences and changes. Annual Review of Psychology, 60, 577-605.

    CrossRef  Google Scholar 

  • McArdle, J. J., & Bell, R. Q. (2000). An introduction to latent growth models for developmental data analysis. In T. D. Little, K. U. Schnabel & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples (pp. 69-107). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • McArdle, J. J., Caja-Ferrer, E., Hamagami, F., & Woodcock, R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115-142.

    CrossRef  Google Scholar 

  • McArdle, J. J., & Cattell, R. B. (1994). Structural equation models of factorial invariance in parallel proportional profiles and oblique confactor. Multivariate Behavioral Research, 20, 63-113.

    CrossRef  Google Scholar 

  • McArdle, J. J., & Epstein, D. B. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110-133.

    CrossRef  Google Scholar 

  • McArdle, J. J., & Hamagami, F. (1992). Modeling incomplete longitudinal and cross-sectional data using latent growth structural models. Experimental Aging Research, 18, 145-166.

    Google Scholar 

  • McArdle, J. J., & Hamagami, F. (2001). Linear dynamic analyses of incomplete longitudinal data. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change. (pp. 137-176). Washington, DC: APA Press.

    Google Scholar 

  • McArdle, J. J., Hamagami, F., Meredith, W., & Bradway, K. P. (2001). Modeling the dynamic hypotheses of Gf-Gc theory using longitudinal life-span data. Learning and Individual Differences, 12, 53-79.

    CrossRef  Google Scholar 

  • McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. The British Journal of Mathematical and Statistical Psychology, 37, 234-251.

    MATH  Google Scholar 

  • McArdle, J. J., & Nesselroade, J. R. (1994). Using multivariate data to structure developmental change. In S. H. Cohen & H. W. Reese (Eds.), Life-span developmental psychology: Methodological innovations (pp. 223-267). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • McArdle, J. J., & Nesselroade, J. R. (2003). Growth curve analyses in contemporary psychological research. In J. Schinka & W. Velicer (Eds.), Comprehensive handbook of psychology: Vol. 2. Research methods in psychology (pp. 447-480). New York: Pergamon Press.

    Google Scholar 

  • McArdle, J. J., Small, B. J., Backman, L., & Fratiglioni, L. (2005). Longitudinal models of growth and survival applied to the early detection of Alzheimer’s Disease. Journal of Geriatric Psychiatry and Neurology, 18, 234-241.

    CrossRef  Google Scholar 

  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122.

    CrossRef  Google Scholar 

  • Muthén, B., & Muthén, L. (2000). Integrating person-centered and variable-centered analysis: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882-891.

    CrossRef  Google Scholar 

  • Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463-469.

    CrossRef  MATH  Google Scholar 

  • Miyazaki, Y., & Raudenbush, S. W. (2000). Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods, 5, 24-63.

    CrossRef  Google Scholar 

  • Nagin, D. (1999). Analyzing developmental trajectories: Semi-parametric, group-based approach. Psychological Methods, 4, 139-177.

    CrossRef  Google Scholar 

  • Nesselroade, J. R., & Baltes, P. B. (Eds.) (1979). Longitudinal research in the study of behavior and development. New York: Academic Press.

    Google Scholar 

  • Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. S. Moskowitz & S. L. Hershberger (Eds.), Modeling intraindividual variability with repeated measures data: Methods and applications (pp. 235-265). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65, 199-215.

    CrossRef  MathSciNet  Google Scholar 

  • Ram, N., & Grimm, K. J. (2007). Using simple and complex growth models to articulate developmental change: Matching method to theory. International Journal of Behavioral Development, 31, 303-316.

    CrossRef  Google Scholar 

  • Rao, C. R. (1958). Some statistical methods for the comparison of growth curves. Biometrics, 14, 1-17.

    CrossRef  MATH  Google Scholar 

  • Rogosa, D. R. (1978). Some results for the Johnson-Neyman technique. Dissertation Abstracts International, 38(9-A).

    Google Scholar 

  • Rogosa, D., & Willett, J. B. (1985). Understanding correlates of change by modeling individual differences in growth. Psychometrika, 50, 203-228.

    CrossRef  MathSciNet  Google Scholar 

  • Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 24, 323-355.

    Google Scholar 

  • Sliwinski, M., & Buschke, H. (1999). Cross-sectional and longitudinal relationships among age, cognition, and processing speed. Psychology and Aging, 14, 18-33.

    CrossRef  Google Scholar 

  • Sullivan, E. V., Rosenbloom, M. J., Lim, K. O., & Pfefferman, A. (2000). Longitudinal changes in cognition, gait, balance in abstinent and relapsed alcoholic men: Relationships to changes in brain structure. Neuropsychology, 14, 178-188.

    CrossRef  Google Scholar 

  • Verbeke, G., Molenberghs, G., Krickeberg, K., & Fienberg, S. (Eds.) (2000). Linear mixed models for longitudinal data. New York: Springer Verlag.

    MATH  Google Scholar 

  • Wedel, M., & DeSarbo, W. S. (1995). A mixture likelihood approach for generalized linear models. Journal of Classification, 12, 21-55.

    CrossRef  MATH  Google Scholar 

  • Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116, 363-381.

    CrossRef  Google Scholar 

  • Wohlwill, J. F. (1973). The study of behavioral development. Oxford, England: Academic Press.

    Google Scholar 

  • Wohlwill, J. F. (1991). The merger of developmental theory and method. In P. Van Geert & L. P. Mos (Eds.), Annals of theoretical psychology: Vol. VII (pp. 129-138).

    Google Scholar 

  • Zeger, S. L., & Harlow, S. D. (1987). Mathematical models from laws of growth to tools for biologic analysis: Fifty years of growth. Growth, 51, 1-21.

    Google Scholar 

  • Zill. N. (1990). Behavior problem index based on parent report. In National Health Interview Survey. Child Health Supplement. Washington, DC: National Center for Health Statistics.

    Google Scholar 

Download references

Acknowledgements

The work described here has been supported since 1980 by the National Institute on Aging (Grant#AG-07137). Kevin Grimm was supported by a National Science Foundation REECE Program Grant (DRL-0815787) and the National Center for Research on Early Childhood Education, Institute of Education Sciences, U.S. Department of Education (R305A06021). We are especially grateful to the assistance of our close friend and colleague, John R. Nesselroade. This research was also influenced by discussions with many others, including Paul Baltes, Steven Boker, Emilio Ferrer, Paolo Ghisletta, Fumiaki Hamagami, John Horn, Bill Meredith, and Carol Prescott.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. McArdle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

McArdle, J.J., Grimm, K.J. (2010). Five Steps in Latent Curve and Latent Change Score Modeling with Longitudinal Data. In: van Montfort, K., Oud, J., Satorra, A. (eds) Longitudinal Research with Latent Variables. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11760-2_8

Download citation