Transparency and Documentation in Simulations of Infectious Disease Outbreaks: Towards Evidence-Based Public Health Decisions and Communications

  • Joakim Ekberg
  • Toomas Timpka
  • Magnus Morin
  • Johan Jenvald
  • James M. Nyce
  • Elin A. Gursky
  • Henrik Eriksson
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 27)


Computer simulations have emerged as important tools in the preparation for outbreaks of infectious disease. To support the collaborative planning and responding to the outbreaks, reports from simulations need to be transparent (accessible) with regard to the underlying parametric settings. This paper presents a design for generation of simulation reports where the background settings used in the simulation models are automatically visualized. We extended the ontology-management system Protégé to tag different settings into categories, and included these in report generation in parallel to the simulation outcomes. The report generator takes advantage of an XSLT specification and collects the documentation of the particular simulation settings into abridged XMLs including also summarized results. We conclude that even though inclusion of critical background settings in reports may not increase the accuracy of infectious disease simulations, it can prevent misunderstandings and less than optimal public health decisions.


outbreak simulation ontologies report generator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WHO. Pandemic influenza preparedness and response WHO guidance document Geneva: World Health Organization (2009)Google Scholar
  2. 2.
    Straetemans, M., Buchholz, U., Reiter, S., Haas, W., Krause, G.: Prioritization strategies for pandemic influenza vaccine in 27 countries of the European Union and the Global Health Security Action Group: a review. BMC Public Health 7(1), 236 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jenvald, J., Morin, M., Timpka, T., Eriksson, H.: Simulation as decision support in pandemic influenza preparedness and response. In: ISCRAM, Delft, The Netherlands, May 13-16 (2007)Google Scholar
  4. 4.
    Timpka, T., Morin, M., Jenvald, J., Eriksson, H., Gursky, E.: Towards a simulation environment for modeling of local influenza outbreaks. In: AMIA Annu. Symp. Proc., pp. 729–733 (2005)Google Scholar
  5. 5.
    Eriksson, H., Morin, M., Jenvald, J., Gursky, E., Holm, E., Timpka, T.: Ontology based modeling of pandemic simulation scenarios. Stud. Health Technol. Inform. 129, 755–759 (2007)PubMedGoogle Scholar
  6. 6.
    Holm, E., Timpka, T.: A discrete time-space geography for epidemiology: from mixing groups to pockets of local order in pandemic simulations. Stud. Health Technol. Inform. 129, 464–468 (2007)PubMedGoogle Scholar
  7. 7.
    Timpka, T., Morin, M., Jenvald, J., Gursky, E., Eriksson, H.: Dealing with ecological fallacy in preparations for influenza pandemics: use of a flexible environment for adaptation of simulations to household structures in local contexts. Stud. Health Technol. Inform. 129, 218–222 (2007)PubMedGoogle Scholar
  8. 8.
    Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy, N.F., Tu, S.: The evolution of Protégé: An environment for knowledge-based systems development. Int. J. Hum. Comp. Stud. 58(1), 89–123 (2003)CrossRefGoogle Scholar
  9. 9.
    Eriksson, H., Morin, M., Ekberg, J., Jenvald, J., Timpka, T.: Assumptions management in simulation of infectious disease outbreaks. In: AMIA Annual Symp. Proc. (in press, 2009)Google Scholar
  10. 10.
    Germann, T.C., Kadau, K., Longini Jr., I.M., Macken, C.A.: Mitigation strategies for pandemic influenza in the United States. Proc. Natl. Acad. Sci. U S A 103(15), 5935–5940 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yang, Y., Elizabeth Halloran, M., Sugimoto, J.D., Longini Jr., I.M.: Detecting Human-to-Human Transmission of Avian Influenza A (H5N1). Emerg. Infect. Dis. 13(9), 1348–1353 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Boelle, P., Bernillon, P., Desenclos, J.: A preliminary estimation of the reproduction ratio for new influenza A (H1N1) from the outbreak in Mexico. Euro. Surveill 14(19) (March-April 2009)Google Scholar
  13. 13.
    Fraser, C., Donnelly, C.A., Cauchemez, S., Hanage, W.P., Van Kerkhove, M.D., Hollingsworth, T.D., Griffin, J., Baggaley, R.F., Jenkins, H.E., Lyons, E.J., Jombart, T., Hinsley, W.R., Grassly, N.C., Balloux, F., Ghani, A.C., Ferguson, N.M., Rambaut, A., Pybus, O.G., Lopez-Gatell, H., Apluche-Aranda, C.M., Chapela, I.B., Zavala, E.P., Guevara, D.M., Checchi, F., Garcia, E., Hugonnet, S., Roth, C.: Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings. Science (2009)Google Scholar
  14. 14.
    Ferguson, N.: Capturing human behavior. Nature 446, 733 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    Timpka, T., Eriksson, H., Gursky, E., Nyce, J., Morin, M., Jenvald, J., Strömgren, M., Holm, E., Ekberg, J.: Population-based simulations of influenza pandemics: validity and significance for public health policy. Bull. World Health Organ. 87, 305–311 (2009)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Joakim Ekberg
    • 1
  • Toomas Timpka
    • 1
  • Magnus Morin
    • 3
  • Johan Jenvald
    • 3
  • James M. Nyce
    • 4
  • Elin A. Gursky
    • 5
  • Henrik Eriksson
    • 2
  1. 1.Dept. of Medicine and Health SciencesLinköping UniversityLinköpingSweden
  2. 2.Dept. of Computer and Information ScienceLinköping UniversityLinköpingSweden
  3. 3.VSL Research LabsLinköpingSweden
  4. 4.Dept. of AnthropologyBall State UniversityMuncieUSA
  5. 5.ANSER/Analytic Services IncNational Strategies Support DirectorateArlingtonUSA

Personalised recommendations