Skip to main content

Turbulence Control Based on Reduced-Order Models and Nonlinear Control Design

  • Conference paper
Active Flow Control II

Abstract

We present a closed-loop flow control strategy for experiments and simulations. This strategy is based on low-order Galerkin models and nonlinear control. One key enabler is a partitioning of the flow in low-, dominant- and high-frequency components, i.e. a base flow, coherent structures and stochastic fluctuations. Another enabler is a control design exploiting the nonlinearities distilled by the model. Examples are presented for the actuated flow around a high-lift configuration and the controlled bluff body wake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King, R. (ed.): Active Flow Control. NNFM, vol. 95. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine, 1st edn. MIT Press, Boston (1948)

    Google Scholar 

  3. Lugt, H.J.: Introduction to Vortex Theory. Vortex Flow Press, Potomac (1996)

    Google Scholar 

  4. Fletcher, C.A.J.: Computational Galerkin Methods, 1st edn. Springer, New York (1984)

    MATH  Google Scholar 

  5. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 1st paperback edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  6. Noack, B.R., Papas, P., Monkewitz, P.A.: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339–365 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rediniotis, O.K., Ko, J., Kurdila, A.J.: Reduced order nonlinear Navier-Stokes models for synthetic jets. J. Fluids Eng. 124(2), 433–443 (2002)

    Article  Google Scholar 

  8. Lumley, J.L., Blossey, P.N.: Control of turbulence. Ann. Rev. Fluid Mech. 30, 311–327 (1998)

    Article  MathSciNet  Google Scholar 

  9. Gerhard, J., Pastoor, M., King, R., Noack, B.R., Dillmann, A., Morzyński, M., Tadmor, G.: Model-based control of vortex shedding using low-dimensional Galerkin models. AIAA Paper 2003-4262 (2003)

    Google Scholar 

  10. Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Noack, B.R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P., Tadmor, G.: A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilibr. Thermodyn. 33(2), 103–148 (2008)

    Article  MATH  Google Scholar 

  12. Noack, B.R., Schlegel, M., Morzyński, M., Tadmor, G.: System reduction strategy for Galerkin models of fluid flows. Internat. J. Numer. Meth. Fluids 63(2) (2010) (in press)

    Google Scholar 

  13. Noack, B.R., Afanasiev, K., Morzyński, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Luchtenburg, D.M., Günter, B., Noack, B.R., King, R., Tadmor, G.: A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration. J. Fluid Mech. 623, 283–316 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schlegel, M., Noack, B.R., Comte, P., Kolomenskiy, D., Schneider, K., Farge, M., Scouten, J., Luchtenburg, D.M., Tadmor, G.: Reduced-order modelling of turbulent jets for noise control. NNFM, pp. 3–27. Springer, Heidelberg (2009)

    Google Scholar 

  16. Slotine, J.J.R., Li, W.: Applied nonlinear control, 1st edn. Pearson Prentice Hall, London (1991)

    MATH  Google Scholar 

  17. Gelb, A.: Applied optimal estimation, 2nd edn. M.I.T. Press, Cambridge (1986)

    Google Scholar 

  18. Wilcox, D.C.: Formulation of the k-omega turbulence model revisited. AIAA J. 46(11), 2823–2838 (2008)

    Article  Google Scholar 

  19. Günther, B., Thiele, F., Petz, R., Nitsche, W., Sahner, J., Weinkauf, T., Hege, H.C.: Control of separation on the flap of a three element high-lift configuration. AIAA Paper 2007-0265 (2007)

    Google Scholar 

  20. Cooper, K.R. (ed.): Wind Tunnel Wall Corrections for Automotive Shapes in Closed-Jet Wind Tunnels. Society of Automotive Engineers Special Publication SAE SP-1176 (1996)

    Google Scholar 

  21. Muminovic, R., Pfeiffer, J., Werner, N., King, R.: Model predictive control for a 2D bluff body under disturbed flow conditions. NNFM. Springer, Heidelberg (2010)

    Google Scholar 

  22. Aleksić, K., Luchtenburg, D.M., King, R., Noack, B.R., Pfeiffer, J.: Robust nonlinear control versus linear model predictive control of a bluff body wake. Accepted for the 5th AIAA Flow Control Conference (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luchtenburg, D.M. et al. (2010). Turbulence Control Based on Reduced-Order Models and Nonlinear Control Design. In: King, R. (eds) Active Flow Control II. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11735-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11735-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11734-3

  • Online ISBN: 978-3-642-11735-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics