Skip to main content

Closed-Loop Control of an Unstable Open Cavity

  • Conference paper
Active Flow Control II

Abstract

A closed loop control approach has been implemented for the case of an unstable open cavity flow. Model reduction techniques and Linear-Quadratic- Gaussian (LQG) control have been combined to stabilize the flow. A blowing/suction actuator has been placed upstream of the cavity and a skin friction sensor downstream of it. Reduced-order models based on global modes and balanced modes have been tested. We show that a reduced-order model based on the unstable global modes (to represent the unstable dynamics) and a few balanced modes (to capture the input-output dynamics of the stable sub-space between the actuator and the sensor) is optimal to stabilize the compensated system. On the other hand, it is shown that the direct and adjoint stable global modes are not appropriate to model the stable subspace due to their strong non-normality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, S., Rowley, C.W.: Low-dimensional models for feedback stabilization of unstable steady states. AIAA 2008-553 (2008)

    Google Scholar 

  2. Akervik, E., Hoepffner, J., Ehrenstein, U., Henningson, D.S.: Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes. Journal of Fluid Mechanics 579, 305–314 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM publishing, Philadelphia (2005)

    MATH  Google Scholar 

  4. Bagheri, S., Brandt, L., Henningson, D.S.: Input-output analysis, model reduction and control of the flat-plate boundary layer. Journal of Fluid Mechanics 620, 263–298 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bagheri, S., Henningson, D.S., Hoepffner, J., Schmid, P.J.: Input-output analysis and control design applied to a linear model of spatially developing flows. Applied Mechanics Reviews 62(2), 020, 803 (2009)

    Article  Google Scholar 

  6. Barbagallo, A., Sipp, D., Schmid, P.J.: Closed-loop control of an open cavity flow using reduced-order models. Journal of Fluid Mechanics 641, 1–50 (2009)

    Article  MATH  Google Scholar 

  7. Bergman, M., Cordier, L., Brancher, J.P.: Optimal rotary control of the cylinder wake using POD reduced-order model. Physics of Fluids 17, 305–314 (2005)

    Article  Google Scholar 

  8. Bewley, T.R.: Flow control: new challenges for a new renaissance. Progress in Aerospace Sciences 37(1), 21–58 (2001)

    Article  Google Scholar 

  9. Bewley, T.R., Liu, S.: Optimal and robust control and estimation of linear paths to transition. Journal of Fluid Mechanics 365, 305–349 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burl, J.B.: Linear optimal control. \({\cal H}_2\) and \({\cal H}_\infty\) methods. Addison-Wesley, Reading (1999)

    Google Scholar 

  11. Chevalier, M., Hoepffner, J., Akervik, E., Henningson, D.S.: Linear feedback control and estimation applied to instabilities in spatially developing boundary layers. Journal of Fluid Mechanics 588, 163–187 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Henningson, D.S., Akervik, E.: The use of global modes to understand transition and perform flow control. Physics of Fluids 20(3) (2008)

    Google Scholar 

  13. Hogberg, M., Bewley, T.R., Henningson, D.S.: Linear feedback control and estimation of transition in plane channel flow. Journal of Fluid Mechanics 481, 149–175 (2003)

    Article  MathSciNet  Google Scholar 

  14. Hogberg, M., Henningson, D.S.: Linear optimal control applied to instabilities in spatially developing boundary layers. Journal of Fluid Mechanics 470, 151–179 (2002)

    Article  MathSciNet  Google Scholar 

  15. Ilak, M., Rowley, C.W.: Modeling of transitional channel flow using balanced proper orthogonal decomposition. Physics of Fluids 20, 034, 103 (2008)

    Google Scholar 

  16. Joshi, S.S., Speyer, J.L., Kim, J.: A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow. Journal of Fluid Mechanics 332, 157–184 (1997)

    MATH  Google Scholar 

  17. Kim, J., Bewley, T.R.: A linear systems approach to flow control. Annual Review of Fluid Mechanics 39, 383–417 (2007)

    Article  MathSciNet  Google Scholar 

  18. Laub, A.J., Heath, M.T., Page, C.C., Ward, R.C.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Transactions on Automatic Control 32(2), 115–122 (1987)

    Article  MATH  Google Scholar 

  19. Lauga, E., Bewley, T.R.: The decay of stabilizability with Reynolds number in a linear model of spatially developing flows. Proc. R. Soc. Lond. A 459, 2077–2095 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Luchtenburg, D.M., Gunther, B., Noack, B.R., King, R., Tadmor, G.: A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration. Journal of Fluid Mechanics 623, 283–316 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lumley, J.L.: Stochastic Tools in Turbulence. Academic Press, London (1970)

    MATH  Google Scholar 

  22. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Transactions on Automatic Control 26, 17–32 (1981)

    Article  MATH  Google Scholar 

  23. Rowley, C.W.: Model reduction for fluids using balanced proper orthogonal decomposition. International Journal of Bifurcation and Chaos 15, 997–1013 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J., Myatt, J.: Feedback control of subsonic cavity flows using reduced-order models. Journal of Fluid Mechanics 579, 315–346 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sipp, D., Lebedev, A.: Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. Journal of Fluid Mechanics 593, 333–358 (2007)

    Article  MATH  Google Scholar 

  26. Willcox, K., Peraire, J.: Balanced model reduction via proper orthogonal decomposition. AIAA Journal 40, 2323–2330 (2002)

    Article  Google Scholar 

  27. Zhou, K., Doyle, C., Glover, E.: Robust and Optimal Control. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sipp, D., Barbagallo, A., Schmid, P. (2010). Closed-Loop Control of an Unstable Open Cavity. In: King, R. (eds) Active Flow Control II. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11735-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11735-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11734-3

  • Online ISBN: 978-3-642-11735-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics