Skip to main content

Enhanced Free Space Beam Capture by Improved Optical Tapers

  • Conference paper
  • 1859 Accesses

Abstract

In our continuous variable quantum key distribution (QKD) scheme, the homodyne detection set-up requires balancing the intensity of an incident beam between two photodiodes. Realistic lens systems are insufficient to provide a spatially stable focus in the presence of large spatial beam-jitter caused by atmospheric transmission. We therefore present an improved geometry for optical tapers which offer up to four times the angular tolerance of a lens. The effective area of a photodiode can thus be increased, without decreasing its bandwidth. This makes them suitable for use in our free space QKD experiment and in free space optical communication in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum Cryptography Rev. Mod. Phys. 74(1), 145 (2002)

    Article  Google Scholar 

  2. Scarani, V., et al.: The Security of Practical Quantum Key Distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: International Conference on Computers, Systems and Signal Processing, Bangalore, India (1984)

    Google Scholar 

  4. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental Quantum Cryptography. J. Cryptol. 5(1), 3 (1992)

    Article  MATH  Google Scholar 

  5. Bennett, C.H.: Quantum Cryptography Using Any Two Nonorthogonal States. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ekert, A.K.: Quantum Cryptography Based on Bell’s Theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ralph, T.C.: Continuous Variable Quantum Cryptography. Phys. Rev. A 61(1), 010303 (1999)

    Article  MathSciNet  Google Scholar 

  8. Silberhorn, C., Korolkova, N., Leuchs, G.: Quantum Key Distribution with Bright Entangled Beams. Phys. Rev. Lett. 88(16), 167902 (2002)

    Article  Google Scholar 

  9. Stucki, D., et al.: High Rate, Long-Distance Quantum Key Distribution Over 250 km of Ultra Low Loss Fibres. New J. Phys. 11(7), 075003 (2009)

    Article  Google Scholar 

  10. Schmitt-Manderbach, T., et al.: Experimental Demonstration of Free-space Decoy-state Quantum Key Distribution Over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    Article  Google Scholar 

  11. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication Phys. Rev. Lett.  81(26), 5932 (1998)

    Google Scholar 

  12. Villoresi, R., et al.: Experimental Verification of the Feasibility of a Quantum Channel Between Space and Earth. New J. Phys. 10(3), 033038 (2008)

    Article  Google Scholar 

  13. Bonato, C., et al.: Feasibility of Satellite Quantum Key Distribution. New J. Phys. 11(4), 045017 (2009)

    Article  Google Scholar 

  14. Majumdar, A.K., Ricklin, J.C. (eds.): Free-Space Laser Communications (Optical and Fiber Communications Reports), vol. 2. Springer, Berlin (2008)

    Google Scholar 

  15. Lorenz, S., Korolkova, N., Leuchs, G.: Continuous-Variable Quantum Key Distribution Using Polarization Encoding and Post Selection. App. Phys. B 79(3), 273 (2004)

    Article  Google Scholar 

  16. Elser, D., et al.: Feasibility of Free Space Quantum Key Distribution with Coherent Polarization States. New J. Phys. 11(4), 045014 (2009)

    Article  MathSciNet  Google Scholar 

  17. Heid, M., Lütkenhaus, N.: Efficiency of Coherent-State Quantum Cryptography in the Presence of Loss: Influence of Realistic Error Correction. Phys. Rev. A 73(5), 052316 (2006)

    Article  Google Scholar 

  18. Silberhorn, C., Ralph, T.C., Lütkenhaus, N., Leuchs, G.: Continuous Variable Quantum Cryptography: Beating the 3-dB Loss Limit. Phys. Rev. Lett. 89(16), 167901 (2002)

    Article  Google Scholar 

  19. Dong, R., et al.: Experimental Entanglement Distillation of Mesoscopic Quantum States. Nature Phys. 4(12), 919 (2008)

    Article  Google Scholar 

  20. Semenov, A.A., Vogel, W.: Quantum Light in the Turbulent Atmosphere. Phys. Rev. A 80(2), 021802 (2009)

    Article  Google Scholar 

  21. Heim, B., et al.: Atomspheric Channel Characteristics for Quantum Communication with Continuous Polarization Variables. To appear in Applied Physics B, http://dx.doi.org/10.1007/s00340-009-3838-8

  22. Fung, C.H.F., et al.: Security Proof of Quantum Key Distribution with Detection Efficiency Mismatch. Quantum Inf. Comput. 9(1), 131 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Lange, R., et al.: 142 km, 5.625 Gbps Free-Space Optical Link Based on Homodyne BPSK Modulation. In: Proceedings of SPIE, vol. 6105, p. 61050A (2006)

    Google Scholar 

  24. Horvath, J., Fuchs, C.: Aircraft to Ground Unidirectional Laser-Communication Terminal for High Resolution Sensors. In: Proceedings of SPIE, vol. 7199, p. 719909 (2009)

    Google Scholar 

  25. Burns, W., Abebe, M., Villarruel, C., Moeller, R.: Loss Mechanisms in Single-mode Fiber Tapers. J. Lightwave Technol. 4(6), 608 (1986)

    Article  Google Scholar 

  26. Love, J.D., et al.: Tapered Single Mode Fibres and Devices. IEE Proceedings-J 138(5), 343 (1991)

    Google Scholar 

  27. Yun, G., Kavehrad, M.: Application of Optical Tapers to Receivers in Free Space/Atmospheric Optical Links. In: Military Communications Conference MILCOM 1990, vol. 3, p. 899 (1990)

    Google Scholar 

  28. Raytrace version 0.9 ©Universität Erlangen-Nürnberg (2008)

    Google Scholar 

  29. Birks, T., Li, Y.W.: The Shape of Fiber Tapers. J. Lightwave Technol. 10(4), 04432 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Bartley, T. et al. (2010). Enhanced Free Space Beam Capture by Improved Optical Tapers. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds) Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11731-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11731-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11730-5

  • Online ISBN: 978-3-642-11731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics