Skip to main content

Categorical Perception

  • Chapter
Cognitive Systems

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 8))

  • 1431 Accesses

Abstract

The ability to recognize and categorize entities in its environment is a vital competence of any cognitive system. Reasoning about the current state of the world, assessing consequences of possible actions, as well as planning future episodes requires a concept of the roles that objects and places may possibly play. For example, objects afford to be used in specific ways, and places are usually devoted to certain activities. The ability to represent and infer these roles, or, more generally, categories, from sensory observations of the world, is an important constituent of a cognitive system’s perceptual processing (Section 1.3 elaborates on this with a very visual example).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burl, M.C., Perona, P.: Recognition of planar object classes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1996), p. 223. IEEE Computer Society, San Francisco (1996)

    Google Scholar 

  2. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: CVPR 2003, pp. 264–271 (2003)

    Google Scholar 

  3. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005) [86], http://cognitivesystems.org/cosybook/chap4.asp#leibe05cvpr

  4. Varma, M., Ray, D.: Learning the discriminative power-invariance trade-off. In: IEEE International Conference on Computer Vision (ICCV 2007). IEEE Computer Society, Rio de Janeiro (2007)

    Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE International Conference on Computer Vision (ICCV 2005) [87]

    Google Scholar 

  7. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision (IJCV) 77(1-3), 259–289 (2008), http://cognitivesystems.org/cosybook/chap4.asp#Leibe05c

    Article  Google Scholar 

  8. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2001), pp. 511–518. IEEE Computer Society, Kauai (2001)

    Google Scholar 

  9. Winn, J.M., Jojic, N.: Locus: Learning object classes with unsupervised segmentation. In: IEEE International Conference on Computer Vision (ICCV 2005) [87], pp. 756–763

    Google Scholar 

  10. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their locations in images. In: IEEE International Conference on Computer Vision (ICCV 2005) [87]

    Google Scholar 

  12. Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object categories from google’s image search. In: IEEE International Conference on Computer Vision (ICCV 2005) [87]

    Google Scholar 

  13. Ettinger, G.J.: Hierarchical object recognition using libraries of parameterized model sub-parts, Tech. rep., MIT (1987)

    Google Scholar 

  14. Tsotsos, J.K.: Analyzing vision at the complexity level. Behavioral and Brain Sciences 13(3), 423–469 (1990)

    Google Scholar 

  15. Mel, B.W., Fiser, J.: Minimizing binding errors using learned conjunctive features. Neural Computation 12(4), 731–762 (2000)

    Article  Google Scholar 

  16. Amit, Y., Geman, D.: A computational model for visual selection. Neural Comp. 11(7), 1691–1715 (1999)

    Article  Google Scholar 

  17. Amit, Y.: 2d Object Detection and Recognition: Models, Algorithms and Networks. MIT Press, Cambridge (2002)

    Google Scholar 

  18. Geman, S., Potter, D., Chi, Z.: Composition systems. Quarterly of Applied Mathematics 60(4), 707–736 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Fidler, S., Berginc, G., Leonardis, A.: Hierarchical statistical learning of generic parts of object structure. In: CVPR, pp. 182–189 (2006), http://cognitivesystems.org/cosybook/chap4.asp#s:fidler06

  20. Fidler, S., Leonardis, A.: Towards scalable representations of visual categories: Learning a hierarchy of parts. In: CVPR 2007 (2007), http://cognitivesystems.org/cosybook/chap4.asp#s:fidler07

  21. Mikolajczyk, K., Leibe, B., Schiele, B.: Multiple object class detection with a generative model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006) [88], pp. 26–36, http://cognitivesystems.org/cosybook/chap4.asp#Mikolajczyk06c

  22. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. Pattern Analysis and Machine Intelligence 29(5)

    Google Scholar 

  23. Jaakkola, T.S., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Proceedings of the 1998 conference on Advances in neural information processing systems II, pp. 487–493. MIT Press, Cambridge (1999)

    Google Scholar 

  24. Fritz, M., Leibe, B., Caputo, B., Schiele, B.: Integrating representative and discriminant models for object category detection. In: IEEE International Conference on Computer Vision (ICCV 2005) [87], http://cognitivesystems.org/cosybook/chap4.asp#Fritz05

  25. Sudderth, E., Torralba, A., Freeman, W., Willsky, A.: Learning hierarchical models of scenes, objects, and parts. In: ICCV 2005, pp. 1331–1338 (2005)

    Google Scholar 

  26. Ommer, B., Buhmann, J.M.: Learning the compositional nature of visual objects. In: CVPR 2007 (2007)

    Google Scholar 

  27. Fleuret, F., Geman, D.: Coarse-to-fine face detection. IJCV 41(1/2), 85–107 (2001)

    Article  MATH  Google Scholar 

  28. Fukushima, K., Miyake, S., Ito, T.: Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Systems, Man and Cybernetics 13(3), 826–834 (1983)

    Google Scholar 

  29. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Object recognition with cortex-like mechanisms. PAMI 29(3), 411–426 (2007)

    Google Scholar 

  30. Scalzo, F., Piater, J.H.: Statistical learning of visual feature hierarchies. In: Workshop on Learning, CVPR (2005)

    Google Scholar 

  31. Ullman, S., Epshtein, B.: Visual Classification by a Hierarchy of Extended Features. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 321–344. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Agarwal, A., Triggs, B.: Hyperfeatures - multilevel local coding for visual recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 30–43. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Ranzato, M.A., Huang., F.-J., Boureau, Y.-L., LeCun, Y.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: CVPR 2007 (2007)

    Google Scholar 

  34. Bienenstock, E., Geman, S.: Compositionality in neural systems. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 223–226. MIT Press, Cambridge (1995)

    Google Scholar 

  35. Zhu, S., Mumford, D.: Quest for a stochastic grammar of images. Foundations and Trends in Computer Graphics and Vision 2(4), 259–362 (2007)

    Article  Google Scholar 

  36. Califano, A., Mohan, R.: Multidimensional indexing for recognizing visual shapes. Pattern Analysis and Machine Intelligence 16(4), 373–392 (1994)

    Article  Google Scholar 

  37. Tsunoda, K., Yamane, Y., Nishizaki, M., Tanifuji, M.: Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nature Neuroscience (4), 832–838 (2001)

    Google Scholar 

  38. Brincat, S., Connor, C.: Dynamic shape synthesis in posterior inferotemporal cortex. Neuron 49(1), 17–24 (2006)

    Article  Google Scholar 

  39. Barlow, H.B.: Cerebral cortex as a model builder. In: Rose, D., Dobson, V. (eds.) Models of the Visual Cortex, pp. 37–46. John Wiley, Chichester (1985)

    Google Scholar 

  40. Rolls, E.T., Deco, G.: Computational Neuroscience of Vision. Oxford Univ. Press, Oxford (2002)

    Google Scholar 

  41. Edelman, S., Intrator, N.: Towards structural systematicity in distributed, statically bound visual representations. Cognitive Science 27, 73–110 (2003)

    Article  Google Scholar 

  42. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: IEEE CVPR 2004, Workshop on Generative-Model Based Vision (2004)

    Google Scholar 

  43. Mutch, J., Lowe, D.G.: Multiclass object recognition with sparse, localized features. In: CVPR 2006, pp. 11–18 (2006)

    Google Scholar 

  44. Wolf, L., Bileschi, S., Meyers, E.: Perception strategies in hierarchical vision systems. In: CVPR 2006, pp. 2153–2160 (2006)

    Google Scholar 

  45. Csurka, G., Dance, C., Fan, L., Willarnowski, J., Bray, C.: Visual categorization with bags of keypoints. In: SLCV (2004)

    Google Scholar 

  46. Mundy, J.L.: Object recognition in the geometric era: A retrospective. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 3–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  47. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection, Rapport De Recherche Inria

    Google Scholar 

  48. Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  49. Stark, M., Schiele, B.: How good are local features for classes of geometric objects. In: ICCV (2007), http://cognitivesystems.org/CoSyBook/chap4.asp#stark07iccv

  50. Berg, A.C., Malik, J.: Geometric blur for template matching. In: CVPR, pp. 607–614 (2001)

    Google Scholar 

  51. Belongie, S., Malik, J., Puzicha, J.: Shape context: A new descriptor for shape matching and object recognition. In: NIPS, pp. 831–837 (2000)

    Google Scholar 

  52. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI 27(10), 1615–1630 (2005)

    Google Scholar 

  53. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. IJCV 60(1), 63–86 (2004)

    Article  Google Scholar 

  54. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.J.V.: A comparison of affine region detectors. IJCV 65(1-2), 43–72 (2005)

    Article  Google Scholar 

  55. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)

    Google Scholar 

  56. Ferrari, V., Tuytelaars, T., Gool, L.J.V.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  57. Martin, D.R., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI 26(5), 530–549 (2004)

    Google Scholar 

  58. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: CVPR 2005 (2005)

    Google Scholar 

  59. Morrone, M., Burr, D.: Feature detection in human vision: a phase dependent energy model. Proc. Royal Soc. London Bulletin, 221–245 (1988)

    Google Scholar 

  60. Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Alvey Conference, pp. 147–152 (1988)

    Google Scholar 

  61. Mikolajczyk, K., Leibe, B., Schiele, B.: Local features for object class recognition. In: ICCV [87], pp. 1792–1799, http://cognitivesystems.org/cosybook/chap4.asp#conf/iccv/MikolajczykLS05

  62. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classification. In: AAAI, Workshop on Learning for Text Categorization (1998)

    Google Scholar 

  63. Torralba, A., Murphy, K., Freeman, W.: Sharing features: efficient boosting procedures for multiclass object detection. In: CVPR (2004)

    Google Scholar 

  64. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning

    Google Scholar 

  65. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research

    Google Scholar 

  66. Griffiths, T.L., Steyvers, M.: Finding scientific topics. In: PNAS USA

    Google Scholar 

  67. Steyvers, M., Griffiths, T.L.: Probabilistic topic models. In: Handbook of Latent Semantic Analysis. Lawrence Erlbaum Associates, Mahwah (2007)

    Google Scholar 

  68. Everingham, M., Zisserman, A., Williams, C.K.I., Van Gool, L.: The PASCAL Visual Object Classes Challenge 2006 (VOC 2006) (2006), http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf

  69. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001) Software, http://www.csie.ntu.edu.tw/~cjlin/libsvm

  70. Chum, O., Zisserman, A.: An exemplar model for learning object classes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007). IEEE Computer Society, Minneapolis (2007)

    Google Scholar 

  71. Fritz, M., Schiele, B.: Decomposition, discovery and detection of visual categories using topic models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008) [89] (to appear), http://cognitivesystems.org/cosybook/chap4.asp#fritz08cvpr

  72. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005) [86], http://cognitivesystems.org/cosybook/chap4.asp#leibe05cvpr

  73. Lawrence, N.D., Moore, A.J.: Hierarchical Gaussian process latent variable models. In: ICML 2007 (2007)

    Google Scholar 

  74. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. IJCV 61, 55–79 (2007)

    Article  Google Scholar 

  75. Williams, C.K.I., Allan, M.: On a connection between object localization with a generative template of features and pose-space prediction methods. Tech. Rep. EDI-INF-RR-0719, University of Edinburgh (2006)

    Google Scholar 

  76. Urtasun, R., Fleet, D.J., Fua, P.: 3D people tracking with Gaussian process dynamical models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006) [88]

    Google Scholar 

  77. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models. In: NIPS 2005 (2005)

    Google Scholar 

  78. Sminchisescu, C., Kanaujia, A., Metaxas, D.N.: BM3E: Discriminative density propagation for visual tracking. PAMI 29, 2030–2044 (2007)

    Google Scholar 

  79. Lawrence, N.D.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models. JMLR 6, 1783–1816 (2005)

    MathSciNet  Google Scholar 

  80. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. IJCV 61, 185–205 (2005)

    Article  Google Scholar 

  81. Demirdjian, D., Taycher, L., Shakhnarovich, G., Grauman, K., Darrell, T.: Avoiding the ”streetlight effect”: Tracking by exploring likelihood modes. In: IEEE International Conference on Computer Vision (ICCV 2005) [87]

    Google Scholar 

  82. Sigal, L., Black, M.J.: Measure locally, reason globally: Occlusion-sensitive articulated pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006) [88]

    Google Scholar 

  83. Ramanan, D., Forsyth, D.A., Zisserman, A.: Tracking people by learning their appearance. PAMI 29, 65–81 (2007)

    Google Scholar 

  84. Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.: Style-based inverse kinematics. In: SIGGRAPH (2004)

    Google Scholar 

  85. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008) [89] (to appear)

    Google Scholar 

  86. IEEE Computer Society, San Diego, CA, USA (2005)

    Google Scholar 

  87. IEEE Computer Society, Beijing, China (2005)

    Google Scholar 

  88. IEEE Computer Society, New York, NY, USA (2006)

    Google Scholar 

  89. IEEE Computer Society, Anchorage, Alaska, USA (2008) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fritz, M., Andriluka, M., Fidler, S., Stark, M., Leonardis, A., Schiele, B. (2010). Categorical Perception. In: Christensen, H.I., Kruijff, GJ.M., Wyatt, J.L. (eds) Cognitive Systems. Cognitive Systems Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11694-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11694-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11693-3

  • Online ISBN: 978-3-642-11694-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics