Skip to main content

Detection and Isolation of Actuator/Surface Faults for a Large Transport Aircraft

  • Chapter
Fault Tolerant Flight Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 399))

Introduction

In this chapter we address the problem of detection and isolation of actuator faults for a Boeing 747-100/200 from the perspective of fault tolerant control (FTC). The main goal of FTC is to allow, after a successful identification of faults, the application of appropriate control reconfiguration to ensure safe operation of the aircraft in the presence of identified failures or, in extreme cases, to guarantee a safe landing to the nearest airport. The most relevant faults for our analysis are related to four categories of primary control surfaces: elevator, stabilizer, rudder, and ailerons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szászi, I., Ganguli, S., Marcos, A., Balas, G.J., Bokor, J.: Application of FDI to a nonlinear Boeing-747 aircraft. In: Proc. Mediterranean Conference on Control and Automation, Lisbon, Portugal (2002)

    Google Scholar 

  2. Marcos, A., Ganguli, S., Balas, G.J.: An application of \(\mathcal{H}_\infty\) fault detection and isolation to a transport aircraft. Control Engineering Practice 13, 105–119 (2005)

    Article  Google Scholar 

  3. Varga, A.: A fault detection toolbox for Matlab. In: Proc. of CACSD 2006, Munich, Germany (2006)

    Google Scholar 

  4. Ding, X., Frank, P.M.: Frequency domain approach and threshold selector for robust model-based fault detection and isolation. In: Proc. of IFAC Symposium SAFEPROCESS 1991, Baden-Baden, Germany (1991)

    Google Scholar 

  5. Nyberg, M.: Criterions for detectability and strong detectability of faults in linear systems. Int. J. Control 75, 490–501 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Frisk, E., Nyberg, M.: A minimal polynomial basis solution to residual generation for fault diagnosis in linear systems. Automatica 37, 1417–1424 (2001)

    Article  MATH  Google Scholar 

  7. Varga, A.: On computing least order fault detectors using rational nullspace bases. In: Proc. of IFAC Symp. SAFEPROCESS 2003, Washington D.C (2003)

    Google Scholar 

  8. Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998)

    Google Scholar 

  9. Varga, A.: New computational approach for the design of fault detection and isolation filters. In: Voicu, M. (ed.) Advances in Automatic Control. The Kluwer International Series in Engineering and Computer Science, vol. 754, pp. 367–381. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  10. Gertler, J.: Designing dynamic consistency relation for fault detection and isolation. Int. J. Control 73, 720–732 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Varga, A.: On designing least order residual generators for fault detection and isolation. In: Proc. 16th Internat. Conf. on Control Systems and Computer Science, Bucharest, Romania, pp. 323–330 (2007)

    Google Scholar 

  12. Varga, A.: On computing nullspace bases – a fault detection perspective. In: Proc. IFAC 2008 Word Congress, Seoul, Korea (2008)

    Google Scholar 

  13. Yuan, Z., Vansteenkiste, G.C., Wen, C.Y.: Improving the observer-based FDI design for efficient fault isolation. Int. J. Control 68(1), 197–218 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Varga, A.: Reliable algorithms for computing minimal dynamic covers. In: Proc. of CDC 2003, Maui, Hawaii (2003)

    Google Scholar 

  15. Varga, A.: Computation of coprime factorizations of rational matrices. Lin. Alg. & Appl. 271, 83–115 (1998)

    Article  MATH  Google Scholar 

  16. Varga, A.: A Descriptor Systems toolbox for Matlab. In: Proc. CACSD 2000 Symposium, Anchorage, Alaska (2000)

    Google Scholar 

  17. Varga, A.: Linear FDI-Techniques and Software Tools. Fault Detection Toolbox V0.8 – Technical Documentation, German Aerospace Center (DLR), Institute of Robotics and Mechatronics (2008)

    Google Scholar 

  18. Marcos, A., Balas, G.J.: A Boeing 747-100/200 Aircraft Fault Tolerant and Fault Diagnostic Benchmark. Technical Report AEM-UoM-2003-1, Department of Aerospace and Engineering Mechanics, University of Minnesota, USA (2003)

    Google Scholar 

  19. Varga, A.: Numerically reliable methods for optimal design of fault detection filters. In: Proc. of CDC 2005, Seville, Spain (2005)

    Google Scholar 

  20. Patton, R.J., Hou, M.: Design of fault detection and isolation observers: a matrix pencil approach. Automatica 34(9), 1135–1140 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Commault, C., Dion, J.-M.: Sensor location for diagnosis in linear systems: a structural analysis. IEEE Trans. Automat. Control 52, 155–169 (2007)

    Article  MathSciNet  Google Scholar 

  22. Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, London (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varga, A. (2010). Detection and Isolation of Actuator/Surface Faults for a Large Transport Aircraft. In: Edwards, C., Lombaerts, T., Smaili, H. (eds) Fault Tolerant Flight Control. Lecture Notes in Control and Information Sciences, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11690-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11690-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11689-6

  • Online ISBN: 978-3-642-11690-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics