Skip to main content

Subspace Predictive Control Applied to Fault-Tolerant Control

  • Chapter
Fault Tolerant Flight Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 399))

Introduction

Subspace identification is a technique that can be used for identification of state-space models from input-output data. This technique has drawn considerable interest in the last two decades [1, 2], especially for linear time-invariant systems. A reason for this is the efficient way in which models are identified for systems of high order and with multiple inputs and outputs. Subspace identification can be used to form a subspace predictor for prediction of future outputs from past input-output data and a future input-sequence. This subspace predictor can be computed without realization of the actual state-space models, which significantly reduces computational requirements. In [3] the subspace predictor has been combined with model predictive control [4], resulting in a control algorithm that has been given the name subspace predictive control (SPC). In SPC, the output predicted by the subspace predictor is part of the cost function of the predictive controller. As a result of the subspace predictor being generated completely from input-output data, the SPC algorithm is a data-driven one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Overschee, P., De Moor, B.: Subspace identification for linear systems: theory, implementation, applications. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  2. Verhaegen, M., Dewilde, P.: Subspace identification, part I: The output-error state space model identification class of algorithms. International Journal of Control 56(5), 1187–1210 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Favoreel, W., de Moor, B.: SPC: Subspace Predictive Control. In: Proceedings of the IFAC World Congress, Beijing, China (July 1999)

    Google Scholar 

  4. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  5. Hallouzi, R., Verhaegen, M.: Fault-tolerant subspace predictive control applied to a Boeing 747 model. Journal of Guidance, Control, and Dynamics 31(4), 873–883 (2008)

    Article  Google Scholar 

  6. Woodley, B.R., How, J.P., Kosut, R.L.: Subspace based direct adaptive \(\mathcal{H}_{\infty}\) control. International Journal of Adaptive Control and Signal Processing 15, 535–561 (2001)

    Article  MATH  Google Scholar 

  7. Kadali, R., Huang, B., Rossiter, A.: A data driven subspace approach to predictive controller design. Control Engineering Practice 11(3), 261–278 (2003)

    Article  Google Scholar 

  8. Ljung, L., McKelvey, T.: Subspace identification from closed loop data. Signal Processing 52(2), 209–215 (1996)

    Article  MATH  Google Scholar 

  9. Favoreel, W., de Moor, B., Gevers, M., van Overschee, P.: Closed-loop model-free subspace-based LQG-design. In: Proceedings of the Mediterranean Conference on Control and Automation, Haifa, Israel (June 1999)

    Google Scholar 

  10. Jansson, M.: A new subspace identification method for open and closed loop data. In: Proceedings of the IFAC World Congress, Prague, Czech Republic (July 2005)

    Google Scholar 

  11. Chiuso, A.: The role of vector autoregressive modeling in predictor-based subspace identification. Automatica 43(6), 1034–1048 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dong, J., Verhaegen, M., Holweg, E.: Closed-loop subspace predictive control for fault tolerant MPC design. In: Proceedings of the IFAC World Congress, Seoul, Korea (July 2008)

    Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  14. Hajiyev, C., Caliskan, F.: Fault Diagnosis and Reconfiguration in Flight Control Systems. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  15. Song, Y., Campa, G., Napolitano, M., Seanor, B., Perhinschi, M.G.: Online parameter estimation techniques comparison within a fault tolerant flight control system. Journal of Guidance, Control, and Dynamics 25(3), 528–537 (2002)

    Article  Google Scholar 

  16. Shin, J.-Y., Belcastro, C.M.: Performance analysis on fault tolerant control system. IEEE Transactions on Control Systems Technology 14(5), 920–925 (2006)

    Article  Google Scholar 

  17. Belkharraz, A.I., Sobel, K.: Simple adaptive control for aircraft control surface failures. IEEE Transactions on Aerospace and Electronic Systems 43(2), 600–611 (2007)

    Article  Google Scholar 

  18. Fielding, C., Varga, A., Bennani, S., Selier, M. (eds.): Advanced Techniques for Clearance of Flight Control Laws. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  19. Bodson, M., Groszkiewicz, J.E.: Multivariable adaptive algorithms for reconfigurable flight control. IEEE Transactions on Control Systems Technology 5(2), 217–229 (1997)

    Article  Google Scholar 

  20. Kale, M.M., Chipperfield, A.J.: Stabilized MPC formulations for robust reconfigurable flight control. Control Engineering Practice 13(6), 771–788 (2005)

    Article  Google Scholar 

  21. Pachter, M., Huang, Y.-S.: Fault tolerant flight control. Journal of Guidance, Control, and Dynamics 26(1), 151–160 (2003)

    Article  Google Scholar 

  22. Kanev, S.: Robust Fault-Tolerant Control. PhD thesis, University of Twente, Enschede, The Netherlands (2004)

    Google Scholar 

  23. Zhang, Y., Rong Li, X.: Detection and diagnosis of sensor and actuator failures using IMM estimator. IEEE Transactions on Aerospace and Electronic Systems 34(4), 1293–1313 (1998)

    Article  Google Scholar 

  24. Hallouzi, R., Verhaegen, M., Kanev, S.: Multiple model estimation: a convex model formulation. International Journal of Adaptive Control and Signal Processing (2008), doi:10.1002/acs.1034

    Google Scholar 

  25. Hallouzi, R.: Multiple-Model Based Diagnosis for Adaptive Fault-Tolerant Control. PhD thesis, Delft University of Technology, Delft, The Netherlands (2008)

    Google Scholar 

  26. Lovera, M., Gustafsson, T., Verhaegen, M.: Recursive subspace identification of linear and non-linear Wiener state-space models. Automatica 36, 1639–1650 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Marcos, A., Balas, G.J.: Development of linear-parameter-varying models for aircraft. Journal of Guidance, Control and Dynamics 27(2), 218–228 (2004)

    Article  Google Scholar 

  28. Smaili, M.H., Mulder, J.A.: Flight data reconstruction and simulation of the 1992 Amsterdam Bijlmermeer airplane accident. In: AIAA Modelling and Simulation Technologies Conference and Exhibit, Denver, Colorado USA (August 2000)

    Google Scholar 

  29. Breeman, J.: Quick start guide to AG 16 benchmark model. Technical report, NLR (2006)

    Google Scholar 

  30. SIMONA. TU Delft - SIMONA research simulator (2007) (last checked October 8, 2007)

    Google Scholar 

  31. Van Paassen, M.M., Stroosma, O., Delatour, J.: DUECA - data-driven activation in distributed real-time computation. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Denver, CO, USA (August 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hallouzi, R., Verhaegen, M. (2010). Subspace Predictive Control Applied to Fault-Tolerant Control. In: Edwards, C., Lombaerts, T., Smaili, H. (eds) Fault Tolerant Flight Control. Lecture Notes in Control and Information Sciences, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11690-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11690-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11689-6

  • Online ISBN: 978-3-642-11690-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics