Skip to main content

Bayesian Networks for Expert Systems: Theory and Practical Applications

  • Chapter

Part of the Studies in Computational Intelligence book series (SCI,volume 281)

Abstract

Bayesian networks are widely accepted as models for reasoning with uncertainty. In this chapter, we focus on models that are created using domain expertise only. After a short review of Bayesian network models and common Bayesian network modeling approaches, we will discuss in more detail three applications of Bayesian networks.With these applications, we aim to illustrate the modeling power and flexibility of the Bayesian networks, which go beyond the standard textbook applications. The first network is applied in a system for medical diagnostic decision support. A distinguishing feature of this network is the large amount of variables in the model. The second one involves an application for petrophysical decision support to determine the mineral content of a well, based on borehole measurements. This model differs from standard Bayesian networks in terms of its continuous variables and nonlinear relations. Finally, we will discuss an application for victim identification by kinship analysis based on DNA profiles. The distinguishing feature in this application is that Bayesian networks are generated and computed on-the-fly based on case information.

Keywords

  • Expert System
  • Bayesian Network
  • Observation Model
  • Short Tandem Repeat Locus
  • Bayesian Network Modeling

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-11688-9_20
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-11688-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balding, D., Nichols, R.: DNA profile match probability calculation: how to allow for population stratification, relatedness, database selection and single bands. Forensic Science International 64(2-3), 125–140 (1994)

    CrossRef  Google Scholar 

  2. Beinlich, I., Suermondt, H., Chavez, R., Cooper, G., et al.: The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In: Proceedings of the Second European Conference on Artificial Intelligence in Medicine, vol. 256. Springer, Berlin (1989)

    Google Scholar 

  3. Bishop, C.: Pattern recognition and machine learning. Springer, Heidelberg (2006)

    MATH  CrossRef  Google Scholar 

  4. Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J., Rolf, B.: Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. The American Journal of Human Genetics 62(6), 1408–1415 (1998)

    CrossRef  Google Scholar 

  5. Burgers, W., Wiegerinck, W., Kappen, H., Spalburg, M.: A Bayesian petrophysical decision support system for estimation of reservoir compositions (submitted)

    Google Scholar 

  6. Butler, J.: Forensic DNA typing: biology, technology, and genetics of STR markers. Academic Press, London (2005)

    Google Scholar 

  7. Castillo, E., Gutierrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network Models. Springer, Heidelberg (1997)

    Google Scholar 

  8. Dawid, A., Mortera, J., Pascali, V.: Non-fatherhood or mutation? A probabilistic approach to parental exclusion in paternity testing. Forensic science international 124(1), 55–61 (2001)

    CrossRef  Google Scholar 

  9. Drábek, J.: Validation of software for calculating the likelihood ratio for parentage and kinship. Forensic Science International: Genetics 3(2), 112–118 (2009)

    CrossRef  Google Scholar 

  10. Duane, S., Kennedy, A., Pendleton, B., Roweth, D.: Hybrid Monte Carlo Algorithm. Phys. Lett. B 195, 216 (1987)

    CrossRef  Google Scholar 

  11. Fishelson, M., Geiger, D.: Exact genetic linkage computations for general pedigrees. Bioinformatics 198(Suppl. 1), S189–S198 (2002)

    Google Scholar 

  12. Friedman, N., Geiger, D., Lotner, N.: Likelihood computations using value abstraction. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 192–200. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  13. Heckerman, D.: Probabilistic interpretations for mycin’s certainty factors. In: Kanal, L., Lemmer, J. (eds.) Uncertainty in artificial intelligence, pp. 167–196. North-Holland, Amsterdam (1986)

    Google Scholar 

  14. Jensen, F.: An Introduction to Bayesian networks. UCL Press (1996)

    Google Scholar 

  15. Jordan, M.: Learning in graphical models. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  16. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society. Series B (Methodological), 157–224 (1988)

    Google Scholar 

  17. MacKay, D.: Information theory, inference and learning algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  18. Mahoney, S., Laskey, K.: Network engineering for complex belief networks. In: Proc. 12th Conf. on Uncertainty in Artificial Intelligence, pp. 389–396. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  19. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. The journal of chemical physics 21(6), 1087 (1953)

    CrossRef  Google Scholar 

  20. Pearl, J.: Probabilistic Reasoning in Intelligent systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, Inc., San Francisco (1988)

    Google Scholar 

  21. Pradhan, M., Provan, G., Middleton, B., Henrion, M.: Knowledge engineering for large belief networks. In: Proc. Tenth Conf. on Uncertainty in Artificial Intelligence, pp. 484–490 (1994)

    Google Scholar 

  22. Russell, S., Norvig, P., Canny, J., Malik, J., Edwards, D.: Artificial intelligence: a modern approach. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  23. Schlumberger: Log Interpretation Principles/Applications. Schlumberger Limited (1991)

    Google Scholar 

  24. Shortliffe, E., Buchanan, B.: A model of inexact reasoning in medicine. Mathematical Biosciences 23(3-4), 351–379 (1975)

    CrossRef  MathSciNet  Google Scholar 

  25. Shwe, M., Middleton, B., Heckerman, D., Henrion, M., Lehman, H., Cooper, G.: Probabilistic Diagnosis Using a Reformulation of the Internist-1/ QMR Knowledge Base. Methods of Information in Medicine 30, 241–255 (1991)

    Google Scholar 

  26. Spalburg, M.: Bayesian uncertainty reduction for log evaluation. SPE International (2004); SPE88685

    Google Scholar 

  27. Takinawa, M., D’Ambrosio, B.: Multiplicative factorization of noisy-MAX. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence UAI 1999, pp. 622–630 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiegerinck, W., Kappen, B., Burgers, W. (2010). Bayesian Networks for Expert Systems: Theory and Practical Applications. In: Babuška, R., Groen, F.C.A. (eds) Interactive Collaborative Information Systems. Studies in Computational Intelligence, vol 281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11688-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11688-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11687-2

  • Online ISBN: 978-3-642-11688-9

  • eBook Packages: EngineeringEngineering (R0)