Skip to main content

Learning with Whom to Communicate Using Relational Reinforcement Learning

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 281))

Abstract

Relational reinforcement learning is a promising direction within reinforcement learning research. It upgrades reinforcement learning techniques using relational representations for states, actions, and learned value functions or policies to allow natural representations and abstractions of complex tasks. Multi-agent systems are characterized by their relational structure and present a good example of a complex task. In this article, we show how relational reinforcement learning could be a useful tool for learning in multi-agent systems. We study this approach in more detail on one important aspect of multi-agent systems, i.e., on learning a communication policy for cooperative systems (e.g., resource distribution). Communication between agents in realistic multi-agent systems can be assumed costly, limited, and unreliable. We perform a number of experiments that highlight the conditions in which relational representations can be beneficial when taking the constraints mentioned above into account.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    Google Scholar 

  2. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multi-agent systems. In: Proceedings of the 15th International Conference on Artificial Intelligence, pp. 746–752 (1998)

    Google Scholar 

  3. Croonenborghs, T., Tuyls, K., Ramon, J., Bruynooghe, M.: Multi-agent relational reinforcement learning. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 192–206. Springer, Heidelberg (2006), http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=41977

    Chapter  Google Scholar 

  4. Driessens, K.: Relational reinforcement learning. Ph.D. thesis, Department of Computer Science, Katholieke Universiteit Leuven (2004), http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2004_05.abs.html

  5. Driessens, K., Ramon, J., Blockeel, H.: Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 97–108. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Džeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Machine Learning 43, 7–52 (2001)

    Article  MATH  Google Scholar 

  7. Finzi, A., Lukasiewicz, T.: Game theoretic golog under partial observability. In: AAMAS 2005: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pp. 1301–1302. ACM, New York (2005), http://doi.acm.org/10.1145/1082473.1082743

    Chapter  Google Scholar 

  8. Guerra-Hernández, A., Fallah-Seghrouchni, A.E., Soldano, H.: Learning in BDI multi-agent systems. In: Dix, J., Leite, J. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3259, pp. 218–233. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Hoen, P., Tuyls, K.: Engineering multi-agent reinforcement learning using evolutionary dynamics. In: Proceedings of the 15th European Conference on Machine Learning (2004)

    Google Scholar 

  10. Hu, J., Wellman, M.P.: Experimental results on Q-learning for general-sum stochastic games. In: ICML 2000: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 407–414. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  11. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research (1996)

    Google Scholar 

  12. Letia, I.A., Precup, D.: Developing collaborative golog agents by reinforcement learning. International Journal on Artificial Intelligence Tools 11(2), 233–246 (2002)

    Article  Google Scholar 

  13. Littman, M.: Markov games as a framework for multi-agent reinforcement learning. In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 157–163 (1994)

    Google Scholar 

  14. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19,20, 629–679 (1994)

    Article  Google Scholar 

  15. Nowé, A., Parent, J., Verbeeck, K.: Social agents playing a periodical policy. In: Proceedings of the 12th European Conference on Machine Learning, Freiburg, pp. 382–393 (2001)

    Google Scholar 

  16. van Otterlo, M.: A characterization of sapient agents. In: International Conference Integration of Knowledge Intensive Multi-Agent Systems (KIMAS 2003), Boston, Massachusetts (2003)

    Google Scholar 

  17. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

    Article  Google Scholar 

  18. Panait, L., Tuyls, K., Luke, S.: Theoretical advantages of lenient learners: An evolutionary game theoretic perspective. Journal of Machine Learning Research 9, 423–457 (2008)

    MathSciNet  Google Scholar 

  19. Puterman, M.: Markov decision processes: Discrete stochastic dynamic programming. John Wiley and Sons, New York (1994)

    MATH  Google Scholar 

  20. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems. Tech. rep., Cambridge University Engineering Department (1994)

    Google Scholar 

  21. Sen, S., Airiau, S., Mukherjee, R.: Towards a Pareto-optimal solution in general-sum games. In: The Proceedings of the Second Intenational Joint Conference on Autonomous Agents and Multiagent Systems, Melbourne, Australia, July 2003, pp. 153–160 (2003)

    Google Scholar 

  22. Stone, P.: Layered learning in multi-agent systems. MIT Press, Cambridge (2000)

    Google Scholar 

  23. Sutton, R., Barto, A.: Reinforcement Learning: an introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  24. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  25. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An overview. In: Proceedings of the ICML 2004 Workshop on Relational Reinforcement Learning (2004)

    Google Scholar 

  26. Tumer, K., Wolpert, D.: COllective INtelligence and Braess’ Paradox. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence, pp. 104–109 (2000)

    Google Scholar 

  27. Tuyls, K., Verbeeck, K., Lenaerts, T.: A selection-mutation model for Q-learning in Multi-Agent Systems. In: The second International Joint Conference on Autonomous Agents and Multi-Agent Systems. ACM Press, Melbourne (2003)

    Google Scholar 

  28. van Otterlo, M.: The logic of adaptive behavior: Knowledge representation and algorithms for the Markov decision process framework in first-order domains. Ph.D. thesis, Department of Computer Science, University of Twente, Enschede, The Netherlands, p. 512 (May 2008)

    Google Scholar 

  29. Watkins, C.: Learning with delayed rewards. Ph.D. thesis, Cambridge University (1989)

    Google Scholar 

  30. Wiering, M.: Explorations in efficient reinforcement learning. Ph.D. thesis, Universiteit van Amsterdam (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ponsen, M. et al. (2010). Learning with Whom to Communicate Using Relational Reinforcement Learning. In: Babuška, R., Groen, F.C.A. (eds) Interactive Collaborative Information Systems. Studies in Computational Intelligence, vol 281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11688-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11688-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11687-2

  • Online ISBN: 978-3-642-11688-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics