Introducing Context-Awareness and Adaptation in Telemedicine Systems

  • Charalampos Doukas
  • Ilias Maglogiannis
  • Kostas Karpouzis
Part of the Studies in Computational Intelligence book series (SCI, volume 279)


Proper coding and transmission of medical and physiological data is a crucial issue for the effective deployment and performance of telemedicine services. This chapter presents a platform for performing proper medical content adaptation based on context awareness. Sensors are used in order to determine the status of a patient being monitored through a medical network. Additional contextual information regarding the patient’s environment (e.g., location, data transmission device and underlying network conditions, etc.) is represented through an ontological knowledge base model. Rule-based evaluation determines proper content (i.e., biosignals, medical video and audio) coding and transmission of medical data, in order to optimize the telemedicine process. The paper discusses the design of the ontological model and provides an initial assessment.


Ubiquitous Computing Content Adaptation Context Awareness Telemedicine System Telemedicine Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lin, J.C.: Applying telecommunication technology to health care delivery. IEEE Engineering in Medicine and Biology Magazine 4, 28–31 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    Pavlopoulos, S., Kyriacou, E., Berler, A., Dembeyiotis, S., Koutsouris, D.: A novel emergency telemedicine system based on wireless communication technology-AMBULANCE. IEEE Transactions on Information Technology in Biomedicine 4, 261–267 (1998)CrossRefGoogle Scholar
  3. 3.
    Deb, S., Ghoshal, S., Malepati, V.N., Kleinman, D.L.: Tele-diagnosis: remote monitoring of large-scale systems. In: Proc. of IEEE Aerospace Conference, pp. 31–42 (2001)Google Scholar
  4. 4.
    Choi, Y.B., Krause, J.S.H., Seo, C.K., Chung, E.K.: Telemedicine in the USA: standardization through information management and technical applications. IEEE Communications Magazine 44, 41–48 (2006)CrossRefGoogle Scholar
  5. 5.
    Pattichis, C.S., Kyriacou, E., Voskarides, S., Pattichis, M.S., Istepanian, R., Schizas, C.N.: Wireless telemedicine systems: an overview. IEEE Antennas and Propagation Magazine 44, 143–153 (2002)CrossRefGoogle Scholar
  6. 6.
    Aakay, M., Marsic, I., Medl, A., Bu, G.: A system for medical consultation and education using multimodal human/machine communication. IEEE Transactions on Information Technology in Biomedicine 2(4), 282–291 (1998)CrossRefGoogle Scholar
  7. 7.
    Zhou, J., Shen, X., Georganas, N.D.: Haptic tele-surgery simulation. In: Proc. of the 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and their Applications, pp. 99–104 (2004)Google Scholar
  8. 8.
    Fontelo, P., DiNino, E., Johansen, K., Khan, A., Ackerman, M.: Virtual Microscopy: Potential Applications in Medical Education and Telemedicine in Countries with Developing Economies. In: Proc. of the 38th Annual Hawaii International Conference on System Sciences, p. 153 (2005)Google Scholar
  9. 9.
    Lage, A.-L., Martins, J., Oliveira, J., Cunha, W.: A quality of service approach for managing tele-medicine multimedia applications requirements. In: Proc. of IEEE Workshop on IP Operations and Management, pp. 186–190 (2004)Google Scholar
  10. 10.
    LeRouge, C., Garfield, M.J., Hevner, A.R.: Quality attributes in telemedicine video conferencing. In: Proc. of 35th Annual Hawaii International Conference on System Sciences, pp. 2050–2059 (2002)Google Scholar
  11. 11.
    Yu, H., Lin, Z., Pan, F.: Applications and improvement of H.264 in medical video compression. IEEE Transactions on Circuits and Systems 52(12), 2707–2716 (2005)CrossRefGoogle Scholar
  12. 12.
    Bernabe, G., Gonzalez, J., Garcia, J.M., Duato, J.: A new lossy 3-D wavelet transform for high-quality compression of medical video. In: Proc. of IEEE EMBS International Conference on Information Technology Applications in Biomedicine, pp. 226–231 (2000)Google Scholar
  13. 13.
    Doukas, C.N., Maglogiannis, I., Kormentzas, G.: Medical Image Compression using Wavelet Transform on Mobile Devices with ROI coding support. In: Proc. of the 27th Annual International Conference of the IEEE EMBS, Shanghai, China,Google Scholar
  14. 14.
    Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: IEEE Workshop on Mobile Computing Systems and Applications (WMCSA 1994), Santa Cruz, CA, US, pp. 89–101 (1994)Google Scholar
  15. 15.
    Schilit, B.N., Theimer, M.M.: Disseminating Active Map Information to Mobile Hosts. IEEE Network 8(5), 22–32 (1994)CrossRefGoogle Scholar
  16. 16.
    Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Computing 5(1), 4–7 (2001)CrossRefGoogle Scholar
  17. 17.
    Wang, S., Yang, J., Chen, N., Chen, X., Zhang, Q.: Human activity recognition with user-free accelerometers in the sensor networks. In: Proc. of International Conference on Neural Networks and Brain, pp. 1212–1217 (2005)Google Scholar
  18. 18.
    Miaou, S.G., Sung, P.-H., Huang, C.-Y.: A Customized Human Fall Detection System Using Omni-Camera Images and Personal Information. In: Proc. of 1st Transdisciplinary conference on Distributed Diagnosis and Home Healthcare, pp. 39–42 (2006)Google Scholar
  19. 19.
    Istrate, D., Castelli, E., Vacher, M., Besacier, L., Serignat, J.F.: Information extraction from sound for medical telemonitoring. IEEE Transaction on Information Theory in Biomedicine 2(10), 264–274 (2006)CrossRefGoogle Scholar
  20. 20.
    Zeimpekis, V., Giaglis, G.M., Lekakos, G.: A taxonomy of indoor and outdoor positioning techniques for mobile location services. ACM SIGecom Exchanges 3(4), 19–27 (2003)CrossRefGoogle Scholar
  21. 21.
    Shih-wei, L., Shao-you, C., Yung-jen, H.J., Polly, H., Chuang-wen, Y.: Emergency Care Management with Location-Aware Services. In: Pervasive Health Conference and Workshops, pp. 1–6 (2006)Google Scholar
  22. 22.
    Ekahau LBS, (accessed on September 26, 2005)
  23. 23.
    Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-based User Location and Tracking System. In: INFOCOM, pp. 775–784. IEEE Press, Los Alamitos (2000)Google Scholar
  24. 24.
    Castro, P., Chiu, P., Kremenek, T., Muntz, R.: A Probabilistic Room Location Service for Wireless Networked Environments. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 18–34. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Doukas, C., Maglogiannis, I.: Enabling Human Status Awareness in Assistive Environments based on Advanced Sound and Motion Data Classification. Presented at The 1st ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRAE), Athens, Greece, July 16-19 (2008)Google Scholar
  26. 26.
    Doukas, C., Maglogiannis, I.: Advanced Patient or Elder Fall Detection based on Movement and Sound Data. Presented at 2nd International Conference on Pervasive Computing Technologies for Healthcare (2008)Google Scholar
  27. 27.
    Doukas, C., Maglogiannis, I.: Human Distress Sound Analysis and Characterization using Advanced Classification Techniques. Presented at 5th Hellenic Conference on Artificial Intelligence, Syros, Greece, October 2-4 (2008)Google Scholar
  28. 28.
    Doukas, C., Maglogiannis, I., Kormentzas, G.: Advanced Telemedicine Services through Context-aware Medical Networks. In: Proceedings of the IEEE EMBS cosponsored International Special Topic Conference on Information Technology in Biomedicine (ITAB 2006), Ioannina-Epirus, Greece, October 26-28 (2006)Google Scholar
  29. 29.
    Public Key Infrastructure, online information,
  30. 30.
    Maglogiannis, Doukas, C., Kormentzas, G., Pliakas, T.: Optimized Mobile Access to DICOM Images using Wavelet compression with ROI coding support. To appear in IEEE Transactions on Information Technology in BiomedicineGoogle Scholar
  31. 31.
    Doukas, C., Maglogiannis, I.: Adaptive Transmission of Medical Image and Video using Scalable Coding and Context-aware Wireless Medical Networks. EURASIP Journal on Wireless Communications and Networking, Article ID 428397 2008, 12 (2008)Google Scholar
  32. 32.
    Makris, L., Argiriou, N., Strintzis, M.G.: Network and data security design for telemedicine applications. Informatics for Health and Social Care 22(2), 133–142 (1997)CrossRefGoogle Scholar
  33. 33.
    Bao, S.-D., Shen, L.-F., Zhang, Y.-T.: A novel key distribution of body area networks for telemedicine. In: Proc. of 2004 IEEE International Workshop on Biomedical Circuits and Systems, pp. 1–17-20a (2004)Google Scholar
  34. 34.
    Protégé Ontology Editor and Knowledge Base Framework, more information,
  35. 35.
    The Semantic Web Rule Language definition,
  36. 36.
  37. 37.
    Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: An Ad Hoc Sensor Network Infrastructure for Emergency Medical Care. In: International Workshop on Wearable and Implantable Body Sensor Networks (2004)Google Scholar
  38. 38.
    Rhee, S., Yang, B.-H., Chang, K., Asada, H.H.: The Ring Sensor: a New Ambulatory Wearable Sensor for Twenty-Four Hour Patient Monitoring. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20(4), pp. 1906–1909 (1998)Google Scholar
  39. 39.
  40. 40.
    Bardram, J.E.: The Java Context Awareness Framework (JCAF): A Service Infrastructure and Programming Framework for Context-Aware Applications (2005)Google Scholar
  41. 41.
    Hong, J., Landay, J.: An Infrastructure Approach to Context-Aware Computing (2001)Google Scholar
  42. 42.
    Biegel, G., Cahill, V.: A Framework for Developing Mobile, Context-aware Applications (2004)Google Scholar
  43. 43.
    Dey, A., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-Computer Interaction 16, 97–166 (2001)CrossRefGoogle Scholar
  44. 44.
    Hohl, F., Mehrmann, L., Hamdan, A.: A context system for a mobile service platform. In: Schmeck, H., Ungerer, T., Wolf, L. (eds.) ARCS 2002. LNCS, vol. 2299, pp. 21–33. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  45. 45.
    Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive computing systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  46. 46.
    Hightower, J., Brumitt, B., Borriello, G.: The location stack: A layered model for location in ubiquitous computing. In: Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA 2002). IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  47. 47.
    Abowd, G.D.: Software engineering issues for ubiquitous computing. In: Proceedings of the 21st international conference on Software engineering, pp. 75–84. IEEE Computer Society Press, Los Alamitos (1999)CrossRefGoogle Scholar
  48. 48.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I. (eds.): OWL Web Ontology Language Semantics and Abstract Syntax. W3C Recommendation 10 February (2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Charalampos Doukas
    • 1
  • Ilias Maglogiannis
    • 2
  • Kostas Karpouzis
    • 3
  1. 1.Department of Information & Communication Systems EngineeringUniversity of the AegeanGreece
  2. 2.Department of Biomedical Informatics LamiaUniversity of Central GreeceGreece
  3. 3.Image, Video and Multimedia Systems LabNational Technical University of AthensGreece

Personalised recommendations