Advertisement

Design and Development of Intelligent Autonomous Robots

  • Nirmal Baran Hui
  • Dilip Kumar Pratihar
Part of the Studies in Computational Intelligence book series (SCI, volume 275)

Abstract

The present chapter deals with the issues related to design and development of autonomous mobile robots. One of the major issues in developing an intelligent and autonomous robot is to design an appropriate scheme for planning its motion without any human intervention. Both conventional potential field method as well as soft computing-based approaches have been developed for the said purpose. Initially, the performances of all the approaches have been studied through computer simulations. Thereafter, real experiments are conducted to test the effectiveness of the said approaches. A camera-based vision system has been used to collect information of the environment, while carrying out the real experiments.

Keywords

Autonomous mobile robots Neuro-fuzzy system Genetic-fuzzy system Genetic-neural system Potential field method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Aziz, I.I., Karara, H.M.: Direct linear transformation into object space coordinates in close-range photogrammetry. In: Proceedings Symposium Close-Range Photogrammetry, University of Illinois at Urbana Champaign, Urbana, pp. 1–18 (1971)Google Scholar
  2. 2.
    Akbarzadeh, M., Kumbla, K., Tunstel, E., Jamshidi, M.: Soft computing for autonomous robotic systems. Computers and Electrical Engineering 26, 5–32 (2000)CrossRefGoogle Scholar
  3. 3.
    Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for autonomy. Special issue on: Integrated architectures for robot control and programming 17(4) (1998)Google Scholar
  4. 4.
    Asada, M., Kitano, H., Noda, I., Veloso, M.: Robocup: today and tomorrow - what we have learned. Artificial Intelligence 110, 193–214 (1999)MATHCrossRefGoogle Scholar
  5. 5.
    Berenji, H.R.: Learning and tuning fuzzy logic controllers through reinforcements. IEEE Transactions on Neural Networks 3, 724–740 (1992)CrossRefGoogle Scholar
  6. 6.
    Borenstein, J., Koren, Y.: Real time obstacle avoidance for fast mobile robots. IEEE Transactions on Systems Man and Cybernetics 19(5), 1179–1187 (1989)CrossRefGoogle Scholar
  7. 7.
    Borenstein, J., Koren, Y.: The vector field histogram – fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation 7(3), 278–288 (1991)CrossRefGoogle Scholar
  8. 8.
    Casillas, J., Cordon, O., Herrera, F.: Learning fuzzy rules using ant colony optimization algorithms. In: Proceedings of 2nd International Workshop on Ant Algorithms, Brussels, Belgium, pp. 13–21 (2000)Google Scholar
  9. 9.
    Cokal, E., Erden, A.: Development of an image processing system for a special purpose mobile robot navigation. In: Proceedings of Fourth Annual Conference on Mechatronics and Machine Vision Practice, Toowoomba, Australia, pp. 246–252 (1997)Google Scholar
  10. 10.
    Denna, M., Mauri, G., Zanaboni, A.M.: Learning fuzzy rules with tabu search - an application to control. IEEE Transactions on Fuzzy Systems 7(2), 295–318 (1999)CrossRefGoogle Scholar
  11. 11.
    Faig, W.: Calibration of close-range photogrammetry systems: mathematical formulation. Photogrammetric Engineering and Remote Sensing 41, 1479–1486 (1975)Google Scholar
  12. 12.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using the relative velocity paradigm. In: Proceedings of IEEE Conference on Robotics and Automation, pp. 560–565 (1993)Google Scholar
  13. 13.
    Fraichard, T., Garnier, P.: Fuzzy control to drive car-like vehicles. Robotics and Autonomous Systems 34, 1–22 (2001)CrossRefGoogle Scholar
  14. 14.
    Fujimura, K., Samet, H.: Accessibility: a new approach to path planning among moving obstacles. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Ann Arbor, MI, pp. 803–807 (1988)Google Scholar
  15. 15.
    Gu, D., Hu, H.: Neural predictive control for a car-like mobile robot. Robotics and Autonomous Systems 39, 73–86 (2002)CrossRefGoogle Scholar
  16. 16.
    Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  17. 17.
    Hui, N.B.: Design and development of adaptive robot motion planner for wheeled robots. Ph.D. thesis, Indian Institute of Technology, Kharagpur (2008)Google Scholar
  18. 18.
    Kant, K., Zucker, S.W.: Towards efficient planning: the path velocity decomposition. International Journal of Robotics Research 5(1), 72–89 (1986)Google Scholar
  19. 19.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5(1), 90–98 (1986)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Koza, J.R.: Genetic Programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge (1992)MATHGoogle Scholar
  21. 21.
    Lamadrid, J.G., Gini, M.L.: Path tracking through uncharted moving obstacles. IEEE Transactions on Systems, Man and Cybernetics 20(6), 1408–1422 (1990)CrossRefGoogle Scholar
  22. 22.
    Latombe, J.C.: Robot motion planning. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  23. 23.
    Lee, P.S., Shen, Y.E.: Model-based location of automated guided vehicles in the navigation sessions by 3d computer vision. Journal of Robotic Systems 11(3), 181–195 (1994)MATHCrossRefGoogle Scholar
  24. 24.
    Leven, D., Sharir, M.: Planning a purely translational motion for a convex object in two-dimensional space using generalized voronoi diagrams. Discrete Computational Geometry 2, 9–31 (1987)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Liu, Y.H., Arimoto, S.: Path planning using a tangent graph for mobile robots among polynomial and curved obstacles. International Journal of Robotics Research 11(4), 376–382 (1992)CrossRefGoogle Scholar
  26. 26.
    Mackworth, A.: On seeing robots. In: Computer Vision: Systems, Theory and Applications, pp. 1–13. World Scientific Press, Singapore (1993)Google Scholar
  27. 27.
    Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7, 1–13 (1975)MATHCrossRefGoogle Scholar
  28. 28.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state claculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)CrossRefGoogle Scholar
  29. 29.
    Mondada, F., Floreano, D.: Evolution of neural control structures: some experiments on mobile robots. Robotics and Autonomous Systems 16, 183–195 (1995)CrossRefGoogle Scholar
  30. 30.
    Nilsson, N.J.: A mobile automation: an application of artificial intelligence techniques. In: Proceedings of the 1st International Joint Conference on Artificial Intelligence (IJCAI), Washington, DC, pp. 509–520 (1969)Google Scholar
  31. 31.
    Nolfi, S., Parsi, D.: Learning to adapt to changing environments in evolving neural networks. Adaptive Behavior 5(1), 75–98 (1997)CrossRefGoogle Scholar
  32. 32.
    Nomura, H., Hayashi, I., Wakami, W.: A learning method of fuzzy inference rules by descent method. In: Proceedings of IEEE International Conference Fuzzy Systems, San Diego, CA (1992)Google Scholar
  33. 33.
    Pham, T.D., Valliappan, S.: A least squares model for fuzzy rules of inference. Fuzzy Sets and Systems 64, 207–212 (1994)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Pratihar, D.K.: Algorithmic and soft computing approaches to robot motion planning. Machine Intelligence and Robotic Control 5(1), 1–16 (2003)Google Scholar
  35. 35.
    Pratihar, D.K.: Evolutionary robotics - a review. Sadhana 28(6), 999–1003 (2003)CrossRefGoogle Scholar
  36. 36.
    Pratihar, D.K.: Soft computing. Narosa Publishing House, New Delhi (2008)Google Scholar
  37. 37.
    Pratihar, D.K., Bibel, W.: Near-optimal, collision-free path generation for multiple robots working in the same workspace using a genetic-fuzzy systems. Machine Intelligence and Robotic Control 5(2), 45–58 (2003)Google Scholar
  38. 38.
    Slack, M.: Navigation template: mediating qualitative guidance control in mobile robots. IEEE Transactions on Systems, Man, Cybernetics 23(2), 452–466 (1993)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Svestka, P., Overmars, M.: Motion planning for car-like robots using a probabilistic learning approach. International Journal of Robotics Research 16(2), 119–143 (1997)CrossRefGoogle Scholar
  40. 40.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics 15, 116–132 (1985)MATHGoogle Scholar
  41. 41.
    Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 2d machine vision meteorology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation 4, 323–344 (1987)CrossRefGoogle Scholar
  42. 42.
    Tsukiyama, T., Huang, T.: Motion stereo for navigation of autonomous vehicle in man-made environments. Pattern Recognition 20(1), 105–113 (1987)CrossRefGoogle Scholar
  43. 43.
    Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man and Cybernetics 22(6), 1414–1422 (1992)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(10), 965–980 (1992)CrossRefGoogle Scholar
  45. 45.
    Yamada, S.: Evolutionary behavior learning for action based environment modeling by a mobile robot. Applied Soft Computing 5, 245–257 (2005)CrossRefGoogle Scholar
  46. 46.
    Yang, S.X., Meng, M.: An efficient neural network approach to dynamic robot motion planning. Neural Networks 13(2), 143–148 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nirmal Baran Hui
    • 1
  • Dilip Kumar Pratihar
    • 2
  1. 1.Department of Mechanical EngineeringNational Institute of TechnologyDurgapurIndia
  2. 2.Soft Computing Lab. Department of Mechanical EngineeringIndian Institute of Technology, KharagpurKharagpurIndia

Personalised recommendations