Statistical Music Modeling Aimed at Identification and Alignment

  • Riccardo Miotto
  • Nicola Montecchio
  • Nicola Orio
Part of the Studies in Computational Intelligence book series (SCI, volume 274)

Abstract

This paper describes a methodology for the statistical modeling of music works. Starting from either the representation of the symbolic score or the audio recording of a performance, a hidden Markov model is built to represent the corresponding music work. The model can be used to identify unknown recordings and to align them with the corresponding score. Experimental evaluation using a collection of classical music recordings showed that this approach is effective in terms of both identification and alignment. The methodology can be exploited as the core component for a set of tools aimed at accessing and actively listening to a music collection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartsch, M.A., Wakefield, G.H.: Audio thumbnailing of popular music using chroma-based representations. IEEE Transactions on Multimedia 7(1), 96–104 (2005)CrossRefGoogle Scholar
  2. 2.
    Cano, P., Loscos, A., Bonada, J.: Score-performance matching using HMMs. In: Proceedings of the International Computer Music Conference, pp. 441–444 (1999)Google Scholar
  3. 3.
    Choi, F.Y.Y.: Advances in domain independent linear text segmentation. In: Proceedings of the Conference on North American chapter of the Association for Computational Linguistics, pp. 26–33 (2000)Google Scholar
  4. 4.
    Cont, A.: Realtime audio to score alignment for polyphonic music instruments using sparse non-negative constraints and hierarchical HMMs. In: IEEE International Conference in Acoustics and Speech Signal Processing, pp. V245–V248 (2006)Google Scholar
  5. 5.
    Dannenberg, R.B., Mukaino, H.: New techniques for enhanced quality of computer accompaniment. In: Proceedings of the International Computer Music Conference, pp. 243–249 (1988)Google Scholar
  6. 6.
    Dixon, S., Widmer, G.: MATCH: a music alignment tool chest. In: Proceedings of the International Conference of Music Information Retrieval, pp. 492–497 (2005)Google Scholar
  7. 7.
    Doraisamy, S., Rüger, S.: A polyphonic music retrieval system using N-grams. In: Proceedings of the International Conference on Music Information Retrieval, pp. 204–209 (2004)Google Scholar
  8. 8.
    Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Cambridge University Press, Cambridge (2000)Google Scholar
  9. 9.
    Fujishima, T.: Realtime chord recognition of musical sound: a system using common Lisp music. In: Proceedings of the International Computer Music Conference, pp. 464–467 (1999)Google Scholar
  10. 10.
    Gómez, E., Herrera, P.: Estimating the tonality of polyphonic audio files: Cognitive versus machine learning modelling strategies. In: Proceedings of the International Conference on Music Information Retrieval, pp. 92–95 (2004)Google Scholar
  11. 11.
    Grubb, L., Dannenberg, R.B.: A stochastic method of tracking a vocal performer. In: Proceedings of the International Computer Music Conference, pp. 301–308 (1997)Google Scholar
  12. 12.
    Harte, C., Sandler, M., Abdallah, S., Gómez, E.: Symbolic representation of musical chords: a proposed syntax for text annotations. In: Proceedings of the International Conference on Music Information Retrieval, pp. 66–71 (2005)Google Scholar
  13. 13.
    Hu, N., Dannenberg, R.B., Tzanetakis, G.: Polyphonic audio matching and alignment for music retrieval. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 185–188 (2003)Google Scholar
  14. 14.
    Herrera, P., Serrá, J., Gómez, E., Serra, X.: Chroma binary similarity and local alignment applied to cover song identification. IEEE Transactions on Audio, Speech, and Language Processing 16(6), 1138–1151 (2008)CrossRefGoogle Scholar
  15. 15.
    Kurth, F., Müller, M.: Efficient index-based audio matching. IEEE Transactions on Audio, Speech, and Language Processing 16(2), 382–395 (2008)CrossRefGoogle Scholar
  16. 16.
    Middleton, R.: Studying Popular Music. Open University Press, Philadelphia (2002)Google Scholar
  17. 17.
    Miotto, R., Orio, N.: Automatic identification of music works through audio matching. In: Proceedings of 11th European Conference on Digital Libraries, pp. 124–135 (2007)Google Scholar
  18. 18.
    Miotto, R., Orio, N.: A music identification system based on chroma indexing and statistical modeling. In: Proceedings of the International Conference on Music Information Retrieval, pp. 301–306 (2008)Google Scholar
  19. 19.
    Mohri, M.: Finite-state transducers in language and speech processing. Computational Linguistics 23(2), 269–311 (1997)MathSciNetGoogle Scholar
  20. 20.
    Montecchio, N., Orio, N.: Automatic alignment of music performances with scores aimed at educational applications. In: AXMEDIS 2008: Proceedings of the 2008 International Conference on Automated solutions for Cross Media Content and Multi-channel Distribution, Washington, DC, USA, pp. 17–24. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  21. 21.
    Nattiez, J.-J.: Musicologie générale et sémiologie. Christian Bourgois éditeur, Paris, FR (1987)Google Scholar
  22. 22.
    Orio, N.: Alignment of performances with scores aimed at content-based music access and retrieval. In: Proceedings of European Conference on Digital Libraries, pp. 479–492 (2002)Google Scholar
  23. 23.
    Orio, N., Déchelle, F.: Score following using spectral analysis and hidden Markov models. In: Proceedings of the International Computer Music Conference, pp. 125–129 (2001)Google Scholar
  24. 24.
    Orio, N., Schwarz, D.: Alignment of monophonic and polyphonic music to a score. In: Proceedings of the International Computer Music Conference, pp. 129–132 (2001)Google Scholar
  25. 25.
    Orio, N., Zattra, L.: Audio matching for the philological analysis of electroacoustic music. In: Proceedings of the International Computer Music Conference, pp. 157–164 (2007)Google Scholar
  26. 26.
    Peeters, G.: Chroma-based estimation of musical key from audio-signal analysis. In: Proceedings of the International Conference of Music Information Retrieval, pp. 115–120 (2006)Google Scholar
  27. 27.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected application. Proceedings of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  28. 28.
    Raphael, C.: Automatic segmentation of acoustic musical signals using hidden Markov models. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 360–370 (1999)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Reynar, J.C.: Topic Segmentations: Algorithms and Applications. PhD Thesis, Computer and Information Science, University of Pennsylvania, USA (1998)Google Scholar
  30. 30.
    Shifrin, J., Pardo, B., Meek, C., Birmingham, W.: HMM-based musical query retrieval. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, pp. 295–300 (2002)Google Scholar
  31. 31.
    Stammen, D.R., Pennycook, B.: Real-time recognition of melodic fragments using the dynamic timewarp algorithm. In: Proceedings of the International Computer Music Conference, pp. 232–235 (1993)Google Scholar
  32. 32.
    Turetsky, R.J., Ellis, D.P.W.: Ground-truth transcriptions of real music from force-aligned MIDI syntheses. In: Proceedings of the International Conference of Music Information Retrieval, pp. 135–141 (2003)Google Scholar
  33. 33.
    Typke, R., Wiering, F., Veltkamp, R.C.: A search method for notated polyphonic music with pitch and tempo fluctuations. In: Proceedings of the International Conference of Music Information Retrieval, pp. 281–288 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Riccardo Miotto
    • 1
  • Nicola Montecchio
    • 1
  • Nicola Orio
    • 1
  1. 1.Department of Information EngineeringUniversity of Padova 

Personalised recommendations