Skip to main content

A harmonic model of hydrodynamic forces produced by a flapping fin

  • Chapter
Animal Locomotion

Abstract

The hydrodynamic control laws of unsteady fins inspired by swimming and flying animals are considered. A controller based on cycle-averaged forces requires a bandwidth lower than the flapping frequency, with correspondingly slow reactions to disturbances or commands in order to avoid undesirable feedback from the oscillating fins. A harmonic model of the periodic thruster forces was empirically found using a mechanical fin flapping in roll and pitch in hover, in uniform flow, and under various kinematic conditions. A multi-fin vehicle could use this model to account for the dominant non-linearities and minimize undesirable motions through coordinated control of individual fins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beal, D.N., Bandyopadhyay, P.R. (2010). A harmonic model of hydrodynamic forces produced by a flapping fin. In: Taylor, G.K., Triantafyllou, M.S., Tropea, C. (eds) Animal Locomotion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11633-9_4

Download citation

Publish with us

Policies and ethics