Skip to main content

An Introduction to Guided and Polar Surfacing

  • Conference paper
Book cover Mathematical Methods for Curves and Surfaces (MMCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5862))

Abstract

This paper gives an overview of two recent techniques for high-quality surface constructions: polar layout and the guided approach. We demonstrate the challenge of high-quality surface construction by examples since the notion of surface quality lacks an overarching theory. A key ingredient of high-quality constructions is a good layout of the surface pieces. Polar layout simplifies design and is natural where a high number of pieces meet. A second ingredient is separation of shape design from surface representation by creating an initial guide shape and leveraging classical approximation-theoretic tools to construct a final surface compatible with industry standards, either as a finite number of polynomial patches or as a subdivision process. An example construction generating guided C 2 surfaces from patches of degree bi-3 highlights the power of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Várady, T., Rockwood, A.: Geometric construction for setback vertex blending. Computer-aided Design 29(6), 413–425 (1997)

    Article  Google Scholar 

  2. Loop, C.: Smooth Subdivision Surfaces Based on Triangles. PhD thesis, Mathematics, University of Utah (1987)

    Google Scholar 

  3. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 350–355 (1978)

    Article  Google Scholar 

  4. Peters, J., Reif, U.: Shape characterization of subdivision surfaces – basic principles. Computer-Aided Geometric Design 21(6), 585–599 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Karciauskas, K., Peters, J., Reif, U.: Shape characterization of subdivision surfaces – case studies. Computer-Aided Geometric Design 21(6), 601–614 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zorin, D., Schröder, P.: A unified framework for primal/dual quadrilateral subdivision schemes. Comput. Aided Geom. Design 18(5), 429–454 (2001); Subdivision algorithms (Schloss Dagstuhl, 2000)

    Google Scholar 

  7. Bloor, M., Wilson, M.J.: Using partial differential equations to generate free form surfaces. Computer Aided Design 22(4), 202–212 (1990)

    Article  MATH  Google Scholar 

  8. Greiner, G.: Variational design and fairing of spline surfaces. Computer Graphics Forum 13(3), C/143–C/154 (1994)

    Google Scholar 

  9. Hubeli, A., Gross, M.: Fairing of non-manifolds for visualization. In: Proceedings Visualization 2000, IEEE Computer Society Technical Committe on Computer Graphics, pp. 407–414 (2000)

    Google Scholar 

  10. Moreton, H.P., Séquin, C.H.: Functional optimization for fair surface design. Computer Graphics 26(2), 167–176 (1992)

    Article  Google Scholar 

  11. Sapidis, N.: Designing Fair Curves and Surfaces. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  12. Welch, W., Witkin, A.: Variational surface modeling. Computer Graphics (SIGGRAPH 1992 Proceedings) 26(2), 157–166 (1992)

    Google Scholar 

  13. Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive multi-resolution modeling on arbitrary meshes. In: Cohen, M. (ed.) SIGGRAPH 1998 Conference Proceedings. Annual Conference Series, ACM SIGGRAPH, pp. 105–114. Addison Wesley, Reading (1998)

    Google Scholar 

  14. Kobbelt, L., Hesse, T., Prautzsch, H., Schweizerhof, K.: Interactive mesh generation for FE-computation on free form surfaces. Engng. Comput. 14, 806–820 (1997)

    Article  MATH  Google Scholar 

  15. Welch, W., Witkin, A.: Free–Form shape design using triangulated surfaces. In: Glassner, A. (ed.) Proceedings of SIGGRAPH 1994, Orlando, Florida, July 24-29. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 247–256. ACM Press, New York (1994)

    Google Scholar 

  16. do Carmo, M.P.: Riemannian Geometry. Birkhäuser Verlag, Boston (1992)

    Book  MATH  Google Scholar 

  17. Taubin, G.: A signal processing approach to fair surface design. In: Cook, R. (ed.) SIGGRAPH 1995 Conference Proceedings, Los Angeles, California, August 6-11. Annual Conference Series, ACM SIGGRAPH, pp. 351–358. Addison Wesley, Reading (1995)

    Google Scholar 

  18. Kobbelt, L.: Discrete fairing. In: Goodman, T., Martin, R. (eds.) Proceedings of the 7th IMA Conference on the Mathematics of Surfaces (IMA 1996), Winchester, UK, September 1997. Mathematics of Surfaces, vol. VII, pp. 101–130. Information Geometers (1997)

    Google Scholar 

  19. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Rockwood, A. (ed.) Siggraph 1999, Los Angeles. Annual Conference Series, ACM Siggraph, pp. 317–324. Addison Wesley Longman, Amsterdam (1999)

    Google Scholar 

  20. Meyer, M., Desbrun, M., Schroder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and Mathematics 3, 34–57 (2002)

    MATH  Google Scholar 

  21. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Westermann, R., Johnson, C., Ertl, T.: A level-set method for flow visualization. In: Ertl, T., Hamann, B., Varshney, A. (eds.) Proceedings Visualization 2000, IEEE Computer Society Technical Committee on Computer Graphics, pp. 147–154 (2000)

    Google Scholar 

  23. Jin, M., Kim, J., Luo, F., Lee, S., Gu, X.: Conformal surface parameterization using Euclidean Ricci flow. Technical Report, http://www.cise.ufl.edu/~gu/publications/technical_report.htm

  24. Kimmel, R.: Intrinsic scale space for images on surfaces: The geodesic curvature flow. Graphical models and image processing: GMIP 59(5), 365–372 (1997)

    Article  Google Scholar 

  25. Malladi, R., Sethian, J.A.: Flows under min/max curvature flow and mean curvature: applications in image processing. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, p. 251. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  26. Schneider, R., Kobbelt, L.: Generating fair meshes with G 1 boundary conditions. In: Martin, R., Wang, W. (eds.) Proceedings of the Conference on Geometric Modeling and Processing (GMP 2000), April  10-12, pp. 251–261. IEEE, Los Alamitos (2000)

    Google Scholar 

  27. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sheffer, A., de Sturler, E.: Surface parameterization for meshing by triangulation flattening. In: Proc. 9th International Meshing Roundtable, pp. 161–172 (2000)

    Google Scholar 

  29. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: Hughes, J. (ed.) SIGGRAPH 2002 Conference Proceedings. Annual Conference Series, pp. 335–361. ACM Press/ACM SIGGRAPH (2002)

    Google Scholar 

  30. Hildebrandt, K., Polthier, K.: Constraint-based fairing of surface meshes. In: Belyaev, A., Garland, M. (eds.) SGP 2007: Eurographics Symposium on Geometry Processing, pp. 203–212. Eurographics Association (2007)

    Google Scholar 

  31. Karčiauskas, K., Peters, J.: Lens-shaped surfaces and C 2 subdivision. Computing (to appear, 2009)

    Google Scholar 

  32. Hahn, J.: Filling polygonal holes with rectangular patches. In: Theory and practice of geometric modeling, Blaubeuren, 1988, pp. 81–91. Springer, Berlin (1989)

    Chapter  Google Scholar 

  33. Gregory, J.A., Hahn, J.M.: A \({C}\sp 2\) polygonal surface patch. Comput. Aided Geom. Design 6(1), 69–75 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ye, X.: Curvature continuous interpolation of curve meshes. Computer Aided Geometric Design 14(2), 169–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Reif, U.: TURBS—topologically unrestricted rational B-splines. Constructive Approximation 14(1), 57–77 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Reif, U.: Analyse und Konstruktion von Subdivisionsalgorithmen für Freiformflächen beliebiger Topologie. Shaker Verlag, Aachen (1999)

    Google Scholar 

  37. Prautzsch, H.: Freeform splines. Computer Aided Geometric Design 14(3), 201–206 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peters, J.: Curvature continuous spline surfaces over irregular meshes. Computer-Aided Geometric Design 13(2), 101–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gregory, J.A., Zhou, J.: Irregular \({C}\sp 2\) surface construction using bi-polynomial rectangular patches. Comput. Aided Geom. Design 16(5), 423–435 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Loop, C.: Second order smoothness over extraordinary vertices. In: Symp. Geom. Processing, pp. 169–178 (2004)

    Google Scholar 

  41. Loop, C.T., Schaefer, S.: G 2 tensor product splines over extraordinary vertices. Comput. Graph. Forum 27(5), 1373–1382 (2008)

    Article  Google Scholar 

  42. Peters, J.: C 2 free-form surfaces of degree (3,5). Computer-Aided Geometric Design 19(2), 113–126 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Karčiauskas, K., Myles, A., Peters, J.: A C 2 polar jet subdivision. In: Scheffer, A., Polthier, K. (eds.) Proceedings of Symposium of Graphics Processing (SGP), Cagliari, Italy, June 26-28, pp. 173–180. ACM Press, New York (2006)

    Google Scholar 

  44. Karčiauskas, K., Peters, J.: Concentric tesselation maps and curvature continuous guided surfaces. Computer-Aided Geometric Design 24(2), 99–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Karčiauskas, K., Peters, J.: Parameterization transition for guided C 2 surfaces of low degree. In: Sixth AFA Conference on Curves and Surfaces Avignon, June 29-July 5, 2006, pp. 183–192 (April 2007)

    Google Scholar 

  46. Karčiauskas, K., Peters, J.: Guided C 2 spline surfaces with V-shaped tessellation. In: Winkler, J., Martin, R. (eds.) Mathematics of Surfaces, pp. 233–244 (2007)

    Google Scholar 

  47. Karčiauskas, K., Peters, J.: On the curvature of guided surfaces. Computer Aided Geometric Design 25(2), 69–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Karčiauskas, K., Peters, J.: Guided spline surfaces. Computer Aided Geometric Design, 1–20 (2009 N1)

    Google Scholar 

  49. Prautzsch, H., Umlauf, G.: Triangular G 2splines. In: Laurent, P.J., LeMéhauté, A. (eds.) Curve and Surface Design, pp. 335–342. Vanderbilt University Press (2000)

    Google Scholar 

  50. Bohl, H., Reif, U.: Degenerate Bézier patches with continuous curvature. Comput. Aided Geom. Design 14(8), 749–761 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Karčiauskas, K., Peters, J.: Assembling curvature continuous surfaces from triangular patches. SMI 26/105, Computers and Graphics (2009), http://dx.doi.org/10.1016/j.cag.2009.03.015

  52. Navau, J.C., Garcia, N.P.: Modeling surfaces from meshes of arbitrary topology. Comput. Aided Geom. Design 17(7), 643–671 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Grimm, C.M., Hughes, J.F.: Modeling surfaces of arbitrary topology using manifolds. Computer Graphics 29, 359–368 (1995); (Annual Conference Series)

    Google Scholar 

  54. Ying, L., Zorin, D.: A simple manifold-based construction of surfaces of arbitrary smoothness. ACM TOG 23(3), 271–275 (2004)

    Article  Google Scholar 

  55. Levin, A.: Modified subdivision surfaces with continuous curvature. ACM Transactions on Graphics 25(3), 1035–1040 (2006)

    Article  MathSciNet  Google Scholar 

  56. Karčiauskas, K., Peters, J.: Bicubic polar subdivision. ACM Trans. Graph. 26(4), 14 (2007)

    Article  Google Scholar 

  57. Myles, A., Karčiauskas, K., Peters, J.: Extending Catmull-Clark subdivision and PCCM with polar structures. In: PG 2007: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, Washington, DC, USA, pp. 313–320. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  58. Myles, A., Karčiauskas, K., Peters, J.: Pairs of bi-cubic surface constructions supporting polar connectivity. Comput. Aided Geom. Des. 25(8), 621–630 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Peters, J., Reif, U.: Subdivision Surfaces. Geometry and Computing, vol. 3. Springer, New York (2008)

    MATH  Google Scholar 

  60. SurfLab, http://www.cise.ufl.edu/research/surflab

  61. Karčiauskas, K., Peters, J.: Finite curvature continuous polar patches. In: Hancock, E., Martin, R. (eds.) IMA Mathematics of Surfaces XIII Conference (in press, 2009)

    Google Scholar 

  62. Karčiauskas, K., Peters, J.: Guided subdivision. Technical Report 2008-464, Dept CISE, University of Florida (2008), posted since 2005 at: http://www.cise.ufl.edu/research/SurfLab/papers.shtml

  63. Reif, U.: A degree estimate for subdivision surfaces of higher regularity. Proc. Amer. Math. Soc. 124(7), 2167–2174 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  64. Prautzsch, H.: Smoothness of subdivision surfaces at extraordinary points. Adv. Comput. Math. 9(3-4), 377–389 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  65. Myles, A.: Curvature-continuous Bicubic Subdivision Surfaces for Polar Configurations. PhD thesis, Dept. CISE, U Florida, USA (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peters, J., Karčiauskas, K. (2010). An Introduction to Guided and Polar Surfacing. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, JL., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2008. Lecture Notes in Computer Science, vol 5862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11620-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11620-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11619-3

  • Online ISBN: 978-3-642-11620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics