Skip to main content

A Shell Model for Real-Time Simulation of Intra-ocular Implant Deployment

  • Conference paper
Book cover Biomedical Simulation (ISBMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5958))

Included in the following conference series:

Abstract

With 30 million interventions a year worldwide, cataract surgery is one of the most frequently performed procedures. Yet, no tool currently allows teaching all steps of the procedure without putting patients at risk. A particularly challenging stage of this surgery deals with the injection and deployment of the intra-ocular lens implant. In this paper we propose to rely on shell theory to accurately describe the complex deformations of the implant. Our approach extends the co-rotational method used in finite element analysis of in-plane deformations to incorporate a bending energy. This results in a relatively simple and computationally efficient approach which was applied to the simulation of the lens deployment. This simulation also accounts for the complex contacts that take place during the injection phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feudner, E., Engel, C., Neuhann, I., Petermeie, K., Bartz-Schmidt, K., Szurman, P.: Virtual reality training improves wet-lab performance of capsulorhexis: results of a randomized study. Graefes. Arch. Clin. Exp. Ophthalmol. 247, 955–963 (2009)

    Article  Google Scholar 

  2. Liu, G., Quek, S.: Finite Element Method: A Practical Course. Butterworth (2003)

    Google Scholar 

  3. Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Graphics Interface 1995, pp. 147–154 (1995)

    Google Scholar 

  4. Hammer, P.E., Perrinb, D.P., del Nidob, P.J., Howe, R.D.: Image-based mass-spring model of mitral valve closure for surgical planning. In: Proc. of SPIE Medical Imaging, vol. 6918 (2008)

    Google Scholar 

  5. Yu, H., Geng, Z.: An improved mass-spring model to simulate draping cloth. In: IEEE International Conference on Intelligent Computation Technology and Automation, vol. 1, pp. 568–571 (2008)

    Google Scholar 

  6. Taskiran, H.D., Güdükbay, U.: Physically-based simulation of hair strips in real-time. In: WSCG (Short Papers), pp. 153–156 (2005)

    Google Scholar 

  7. Wang, F., Duratti, L., Samur, E., Spaelter, U., Bleuler, H.: A Computer-Based Real-Time Simulation of Interventional Radiology. In: The 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBS), pp. 1742–1745 (2007)

    Google Scholar 

  8. Choi, M.G., Woo, S.Y., Ko, H.S.: Real-time simulation of thin shells. In: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 349–354 (2007)

    Google Scholar 

  9. Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: Symposium on Computer Animation, pp. 28–36 (2003)

    Google Scholar 

  10. Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: Proceedings of the Symposium on Computer Animation, pp. 62–67 (2003)

    Google Scholar 

  11. Wicke, M., Steinemann, D., Gross, M.: Efficient animation of point-sampled thin shells. In: Computer Graphics Forum (Eurographics 2005), vol. 24, pp. 667–676 (2005)

    Google Scholar 

  12. Thomaszewski, B., Wacker, M., Strasser, W.: A consistent bending model for cloth simulation with corotational subdivision finite elements. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 107–116 (2006)

    Google Scholar 

  13. Felippa, C.A.: A systematic approach to the element independent corotational dynamics of finite elements. Technical Report CU-CAS-00-03, Center for Aerospace Structures (2000)

    Google Scholar 

  14. Muller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface (GI 2004), pp. 239–246 (2004)

    Google Scholar 

  15. Przemieniecki, J.: Theory of matrix structural analysis. McGraw-Hill, New York (1985)

    Google Scholar 

  16. Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: Sofa - an open source framework for medical simulation. In: Medicine Meets Virtual Reality, pp. 13–18 (2007)

    Google Scholar 

  17. Zhongnian, X.: A simple and efficient triangular fem for plate bending. Acta Mechanica Sinica 2(2), 185–192 (1986)

    Article  Google Scholar 

  18. Saupin, G., Duriez, C., Cotin, S., Grisoni, L.: Efficient contact modeling using compliance warping. In: Proceedings of Computer Graphics International Conference (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Comas, O., Cotin, S., Duriez, C. (2010). A Shell Model for Real-Time Simulation of Intra-ocular Implant Deployment. In: Bello, F., Cotin, S. (eds) Biomedical Simulation. ISBMS 2010. Lecture Notes in Computer Science, vol 5958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11615-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11615-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11614-8

  • Online ISBN: 978-3-642-11615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics