Fundamentals of Turbulent Flows
The preceding Chapter dealt with stability of laminar flows, their perturbation and transition to the turbulent state. In discussing the transition process, we prepared the essentials for better understanding the basic physics of the more complex turbulent flow, which is still an unresolved and extremely challenging problem in fluid mechanics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Taylor, G.I.: Diffusion by Continuous Movements. Proc. London Math. Soc. Ser. 2 20, 196–211 (1921)
von Kármán, T.: Aeronaut. Sci 4, 137 (1937)
Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)
Rotta, J.C.: Turbulente Strömungen. B.C.Teubner-Verlag, Stuttgart (1972)
Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)
Kolmogorov, A.N.: Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number. Doklady Akademia Nauk, SSSR 30, 299–303 (1941)
Grant, H., Stewart, H.R.W., Moilliet, A.: Turbulence Spectra from A Tidal Channel. J. Fluid Mech. 12, 241 (1962)
Onsager, L.: Phys. Rev. 68, 286 (1945)
Weizsäcker, C.F.: Zeitschrift Physik 124, 628 (1948), also proc. Roy. Soc. London 195A, 402 (1948)
Bradshaw, P., Perot, J.B.: A note on turbulent energy dissipation in the viscous wall region. Physics of Fluids A, 3305 (1993)
Launder, B.E., Reece, G.I., Rodi, W.: Progress in the Development of Reynolds-Stress Turbulent Closure. J. of Fluid Mechanics 68, 537–566 (1975)
Launder, B.E., Spalding, D.B.: “The Numerical Computation of Turbulent Flows, Comp. Method in Applied mechanics and Engineering 3, 269–289 (1974)
Boussinesq, J.: Mé. pré. par. div. savants á l’ acad. sci. Paris 23, 46 (1887)
Prandtl, L.: “Über die ausgebildete Turbulenz,”. ZAMM 5, 136–139 (1925)
Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)
Wilcox, D.: Turbulence Modeling for CFD. DCW Industries, Inc., 5354 Palm Drive, La Ca. nada, California 91011 (1993)
Müller, T.: Untersuchungen von Geschwindigkeitsprofilen und deren Entwicklung in Strömungsrichtung in zweidimensionalen transitionalen Grenzschichten anhand eines Geschwindigkeitsmodells. Dissertation, Technische Hochschule Darmstadt, Germany D 17 (1991)
Van Driest, E.R.: Turbulent Boundary Layer in Compressible Fluids. Journal of Aeronautical Sciences 18, 145–160, 216 (1951)
Kays, W.M., Moffat, R.J.: The behavior of Transpired Turbulent Boundary layers. Studies in Convection, vol. 1: Theory, Measurement and application. Academic Press, London (1975)
Smith, A.M.O., Cebeci, T.: Numerical solution of the turbulent boundary layer equations. Douglas aircraft division report DAC 33735 (1967)
Klebanoff, P.S.: Characteristics of Turbulence in Boundary Layer with zero Pressure gradient. NACA TN 3178 (1954)
Baldwin, B.S., Lomax, H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 78-257 (1978)
Kolmogorov, A.M.: Equations of Turbulent Motion of an incompressible fluid. Akad. Nauk SSR, Seria Fiz. VI, No. 1-2 (1942)
Prandtl, L.: Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachrichten der Akademie der Wissenschaften, Göttingen, Math. Phys Kl. 1945, 6 (1945)
Launder, B.E., Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972)
Chou, P.Y.: On the Velocity Correlations and the Solution of the Equation of Turbulent Fluctuations. Quart. Appl. Math. 3, 38 (1945)
Jones, W.P., Launder, B.E.: The Prediction of Laminarization with a Two-equation Model of Turbulence. International Journal of Heat and Mass Transfer 15, 301–314 (1972)
Menter, F.R.: Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows. AIAA Technical Paper, 93-2906 (1993)
Rodi, W., Scheurer, G.: Scrutinizing the k - ε Model Under Adverse Pressure Gradient Conditions. J. Fluids Eng. 108, 174–179 (1986)
Menter, F.R.: Influence of Freestream Values on k - ω Turbulence Model Predictions. AIAA Journal 30(6) (1992)
Wicox, D.: DCW Industries, Inc., Private communications (March 2008)
Menter, F.R.: Zonal Two Equation k-ε Turbulence Models for Aerodynamic Flows. AIAA Paper 93-2906 (1993)
Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32, 269–289 (1994)
Menter, F.R., Kuntz, M., Langtry, R.: Ten Years of Experience with the SST Turbulence Model. In: Hanjalic, K., Nagano, Y., Tummers, M. (eds.). Turbulence, Heat and Mass Transfer, vol. 4, pp. 625–632. Begell House Inc. (2003)
Menter, F.: CFX, Germany, Private communications (April 2008)
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Schobeiri, M.T. (2010). Turbulent Flow, Modeling. In: Fluid Mechanics for Engineers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11594-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-11594-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11593-6
Online ISBN: 978-3-642-11594-3
eBook Packages: EngineeringEngineering (R0)