Skip to main content

Turbulent Flow, Modeling

  • Chapter
Fluid Mechanics for Engineers

Fundamentals of Turbulent Flows

The preceding Chapter dealt with stability of laminar flows, their perturbation and transition to the turbulent state. In discussing the transition process, we prepared the essentials for better understanding the basic physics of the more complex turbulent flow, which is still an unresolved and extremely challenging problem in fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor, G.I.: Diffusion by Continuous Movements. Proc. London Math. Soc. Ser. 2 20, 196–211 (1921)

    Article  Google Scholar 

  2. von Kármán, T.: Aeronaut. Sci 4, 137 (1937)

    Google Scholar 

  3. Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)

    Google Scholar 

  4. Rotta, J.C.: Turbulente Strömungen. B.C.Teubner-Verlag, Stuttgart (1972)

    MATH  Google Scholar 

  5. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  6. Kolmogorov, A.N.: Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number. Doklady Akademia Nauk, SSSR 30, 299–303 (1941)

    Google Scholar 

  7. Grant, H., Stewart, H.R.W., Moilliet, A.: Turbulence Spectra from A Tidal Channel. J. Fluid Mech. 12, 241 (1962)

    Article  MATH  Google Scholar 

  8. Onsager, L.: Phys. Rev. 68, 286 (1945)

    Google Scholar 

  9. Weizsäcker, C.F.: Zeitschrift Physik 124, 628 (1948), also proc. Roy. Soc. London 195A, 402 (1948)

    Article  Google Scholar 

  10. Bradshaw, P., Perot, J.B.: A note on turbulent energy dissipation in the viscous wall region. Physics of Fluids A, 3305 (1993)

    Google Scholar 

  11. Launder, B.E., Reece, G.I., Rodi, W.: Progress in the Development of Reynolds-Stress Turbulent Closure. J. of Fluid Mechanics 68, 537–566 (1975)

    Article  MATH  Google Scholar 

  12. Launder, B.E., Spalding, D.B.: “The Numerical Computation of Turbulent Flows, Comp. Method in Applied mechanics and Engineering 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  13. Boussinesq, J.: Mé. pré. par. div. savants á l’ acad. sci. Paris 23, 46 (1887)

    Google Scholar 

  14. Prandtl, L.: “Über die ausgebildete Turbulenz,”. ZAMM 5, 136–139 (1925)

    MATH  Google Scholar 

  15. Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  16. Wilcox, D.: Turbulence Modeling for CFD. DCW Industries, Inc., 5354 Palm Drive, La Ca. nada, California 91011 (1993)

    Google Scholar 

  17. Müller, T.: Untersuchungen von Geschwindigkeitsprofilen und deren Entwicklung in Strömungsrichtung in zweidimensionalen transitionalen Grenzschichten anhand eines Geschwindigkeitsmodells. Dissertation, Technische Hochschule Darmstadt, Germany D 17 (1991)

    Google Scholar 

  18. Van Driest, E.R.: Turbulent Boundary Layer in Compressible Fluids. Journal of Aeronautical Sciences 18, 145–160, 216 (1951)

    Google Scholar 

  19. Kays, W.M., Moffat, R.J.: The behavior of Transpired Turbulent Boundary layers. Studies in Convection, vol. 1: Theory, Measurement and application. Academic Press, London (1975)

    Google Scholar 

  20. Smith, A.M.O., Cebeci, T.: Numerical solution of the turbulent boundary layer equations. Douglas aircraft division report DAC 33735 (1967)

    Google Scholar 

  21. Klebanoff, P.S.: Characteristics of Turbulence in Boundary Layer with zero Pressure gradient. NACA TN 3178 (1954)

    Google Scholar 

  22. Baldwin, B.S., Lomax, H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 78-257 (1978)

    Google Scholar 

  23. Kolmogorov, A.M.: Equations of Turbulent Motion of an incompressible fluid. Akad. Nauk SSR, Seria Fiz. VI, No. 1-2 (1942)

    Google Scholar 

  24. Prandtl, L.: Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachrichten der Akademie der Wissenschaften, Göttingen, Math. Phys Kl. 1945, 6 (1945)

    MathSciNet  Google Scholar 

  25. Launder, B.E., Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972)

    MATH  Google Scholar 

  26. Chou, P.Y.: On the Velocity Correlations and the Solution of the Equation of Turbulent Fluctuations. Quart. Appl. Math. 3, 38 (1945)

    MATH  MathSciNet  Google Scholar 

  27. Jones, W.P., Launder, B.E.: The Prediction of Laminarization with a Two-equation Model of Turbulence. International Journal of Heat and Mass Transfer 15, 301–314 (1972)

    Article  Google Scholar 

  28. Menter, F.R.: Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows. AIAA Technical Paper, 93-2906 (1993)

    Google Scholar 

  29. Rodi, W., Scheurer, G.: Scrutinizing the k - ε Model Under Adverse Pressure Gradient Conditions. J. Fluids Eng. 108, 174–179 (1986)

    Article  Google Scholar 

  30. Menter, F.R.: Influence of Freestream Values on k - ω Turbulence Model Predictions. AIAA Journal 30(6) (1992)

    Google Scholar 

  31. Wicox, D.: DCW Industries, Inc., Private communications (March 2008)

    Google Scholar 

  32. Menter, F.R.: Zonal Two Equation k-ε Turbulence Models for Aerodynamic Flows. AIAA Paper 93-2906 (1993)

    Google Scholar 

  33. Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32, 269–289 (1994)

    Article  Google Scholar 

  34. Menter, F.R., Kuntz, M., Langtry, R.: Ten Years of Experience with the SST Turbulence Model. In: Hanjalic, K., Nagano, Y., Tummers, M. (eds.). Turbulence, Heat and Mass Transfer, vol. 4, pp. 625–632. Begell House Inc. (2003)

    Google Scholar 

  35. Menter, F.: CFX, Germany, Private communications (April 2008)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schobeiri, M.T. (2010). Turbulent Flow, Modeling. In: Fluid Mechanics for Engineers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11594-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11594-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11593-6

  • Online ISBN: 978-3-642-11594-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics