Advertisement

Turbulent Flow, Modeling

  • Meinhard T. Schobeiri

Fundamentals of Turbulent Flows

The preceding Chapter dealt with stability of laminar flows, their perturbation and transition to the turbulent state. In discussing the transition process, we prepared the essentials for better understanding the basic physics of the more complex turbulent flow, which is still an unresolved and extremely challenging problem in fluid mechanics.

Keywords

Boundary Layer Viscous Sublayer Inertial Subrange Shear Stress Transport Small Eddy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor, G.I.: Diffusion by Continuous Movements. Proc. London Math. Soc. Ser. 2 20, 196–211 (1921)CrossRefGoogle Scholar
  2. 2.
    von Kármán, T.: Aeronaut. Sci 4, 137 (1937)Google Scholar
  3. 3.
    Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)Google Scholar
  4. 4.
    Rotta, J.C.: Turbulente Strömungen. B.C.Teubner-Verlag, Stuttgart (1972)zbMATHGoogle Scholar
  5. 5.
    Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)zbMATHGoogle Scholar
  6. 6.
    Kolmogorov, A.N.: Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number. Doklady Akademia Nauk, SSSR 30, 299–303 (1941)Google Scholar
  7. 7.
    Grant, H., Stewart, H.R.W., Moilliet, A.: Turbulence Spectra from A Tidal Channel. J. Fluid Mech. 12, 241 (1962)zbMATHCrossRefGoogle Scholar
  8. 8.
    Onsager, L.: Phys. Rev. 68, 286 (1945)Google Scholar
  9. 9.
    Weizsäcker, C.F.: Zeitschrift Physik 124, 628 (1948), also proc. Roy. Soc. London 195A, 402 (1948)CrossRefGoogle Scholar
  10. 10.
    Bradshaw, P., Perot, J.B.: A note on turbulent energy dissipation in the viscous wall region. Physics of Fluids A, 3305 (1993)Google Scholar
  11. 11.
    Launder, B.E., Reece, G.I., Rodi, W.: Progress in the Development of Reynolds-Stress Turbulent Closure. J. of Fluid Mechanics 68, 537–566 (1975)zbMATHCrossRefGoogle Scholar
  12. 12.
    Launder, B.E., Spalding, D.B.: “The Numerical Computation of Turbulent Flows, Comp. Method in Applied mechanics and Engineering 3, 269–289 (1974)zbMATHCrossRefGoogle Scholar
  13. 13.
    Boussinesq, J.: Mé. pré. par. div. savants á l’ acad. sci. Paris 23, 46 (1887)Google Scholar
  14. 14.
    Prandtl, L.: “Über die ausgebildete Turbulenz,”. ZAMM 5, 136–139 (1925)zbMATHGoogle Scholar
  15. 15.
    Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)zbMATHGoogle Scholar
  16. 16.
    Wilcox, D.: Turbulence Modeling for CFD. DCW Industries, Inc., 5354 Palm Drive, La Ca. nada, California 91011 (1993)Google Scholar
  17. 17.
    Müller, T.: Untersuchungen von Geschwindigkeitsprofilen und deren Entwicklung in Strömungsrichtung in zweidimensionalen transitionalen Grenzschichten anhand eines Geschwindigkeitsmodells. Dissertation, Technische Hochschule Darmstadt, Germany D 17 (1991)Google Scholar
  18. 18.
    Van Driest, E.R.: Turbulent Boundary Layer in Compressible Fluids. Journal of Aeronautical Sciences 18, 145–160, 216 (1951)Google Scholar
  19. 19.
    Kays, W.M., Moffat, R.J.: The behavior of Transpired Turbulent Boundary layers. Studies in Convection, vol. 1: Theory, Measurement and application. Academic Press, London (1975)Google Scholar
  20. 20.
    Smith, A.M.O., Cebeci, T.: Numerical solution of the turbulent boundary layer equations. Douglas aircraft division report DAC 33735 (1967)Google Scholar
  21. 21.
    Klebanoff, P.S.: Characteristics of Turbulence in Boundary Layer with zero Pressure gradient. NACA TN 3178 (1954)Google Scholar
  22. 22.
    Baldwin, B.S., Lomax, H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 78-257 (1978)Google Scholar
  23. 23.
    Kolmogorov, A.M.: Equations of Turbulent Motion of an incompressible fluid. Akad. Nauk SSR, Seria Fiz. VI, No. 1-2 (1942)Google Scholar
  24. 24.
    Prandtl, L.: Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachrichten der Akademie der Wissenschaften, Göttingen, Math. Phys Kl. 1945, 6 (1945)MathSciNetGoogle Scholar
  25. 25.
    Launder, B.E., Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972)zbMATHGoogle Scholar
  26. 26.
    Chou, P.Y.: On the Velocity Correlations and the Solution of the Equation of Turbulent Fluctuations. Quart. Appl. Math. 3, 38 (1945)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Jones, W.P., Launder, B.E.: The Prediction of Laminarization with a Two-equation Model of Turbulence. International Journal of Heat and Mass Transfer 15, 301–314 (1972)CrossRefGoogle Scholar
  28. 28.
    Menter, F.R.: Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows. AIAA Technical Paper, 93-2906 (1993)Google Scholar
  29. 29.
    Rodi, W., Scheurer, G.: Scrutinizing the k - ε Model Under Adverse Pressure Gradient Conditions. J. Fluids Eng. 108, 174–179 (1986)CrossRefGoogle Scholar
  30. 30.
    Menter, F.R.: Influence of Freestream Values on k - ω Turbulence Model Predictions. AIAA Journal 30(6) (1992)Google Scholar
  31. 31.
    Wicox, D.: DCW Industries, Inc., Private communications (March 2008)Google Scholar
  32. 32.
    Menter, F.R.: Zonal Two Equation k-ε Turbulence Models for Aerodynamic Flows. AIAA Paper 93-2906 (1993)Google Scholar
  33. 33.
    Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32, 269–289 (1994)CrossRefGoogle Scholar
  34. 34.
    Menter, F.R., Kuntz, M., Langtry, R.: Ten Years of Experience with the SST Turbulence Model. In: Hanjalic, K., Nagano, Y., Tummers, M. (eds.). Turbulence, Heat and Mass Transfer, vol. 4, pp. 625–632. Begell House Inc. (2003)Google Scholar
  35. 35.
    Menter, F.: CFX, Germany, Private communications (April 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Meinhard T. Schobeiri

    There are no affiliations available

    Personalised recommendations