Viscous Laminar Flow

  • Meinhard T. Schobeiri


As briefly discussed in Chapter 4, the motion of Newtonian fluids is described by the Navier-Stokes equations. Due to the non-linear nature of these equations and the general complexity of the flow geometry, analytical solutions of Navier-Stoke’s equations has been exhibiting a major problem in fluid mechanics. The continuous development in the area of computer technology and the introduction of powerful numerical methods in the last two decades have brought a breakthrough in the area of Computational Fluid mechanics (CFD). Using CFD-methods, viscous flow problems within arbitrary channel geometries can be solved numerically regardless the complexity of the geometry. This requires significant computational efforts. An adequate treatment of CFD-methods is beyond the scope of this book. However, in the context of this course, in Chapter 9, we present the essential features of the computational fluid mechanics that are necessary for the basic understanding of the physics behind CFD. This includes a rather detailed introduction into turbulence and its modeling.

In this chapter, we introduce a class of exact solutions of the Navier-Stokes equations for the two-dimensional laminar flow, a special case of viscus flows, where the velocity does not exhibit a random characteristic. Exact analytical solutions are found only for few cases, where the flow can be assumed unidirectional. This implies that the velocity vector has a component in longitudinal direction only that may change in lateral direction. A general overview of a class of exact solutions for viscous laminar flows through two-dimensional channels is found in Schlichting [1]. In a few curved channels, where the velocity vector of a two-dimensional flow has generally two components, the coordinate system can be transformed such that the velocity vector has only one direction in a curvilinear coordinate system. In the following sections, several cases are presented that are of fundamental significance for understanding the motion of viscous flows.


Velocity Distribution Laminar Flow Wall Shear Stress Couette Flow Outer Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)zbMATHGoogle Scholar
  2. 2.
    Jeffery, G.B.: The two-dimensional steady motion of a viscous fluid. Phil. Mag. 6th Ser., 455 (1915)Google Scholar
  3. 3.
    Hamel, G.: Spiralförmige Bewegung zäher Flüssigkeiten. Jahres-Bericht der deutschen Mathematikervereinigung 25, 34–60 (1916)zbMATHGoogle Scholar
  4. 4.
    Schobeiri, M.T.: Geschwindigkeit- und Temperaturvereitlungen in Hamelscher Spiralströmung. Zeitschrift für angewandte Mathematik und Mechanik, ZAMM 60, 195 (1980)zbMATHCrossRefGoogle Scholar
  5. 5.
    Schobeiri, M.T.: The Influence of Curvature and Pressure Gradient on the Flow and Velocity Distribution. Int. J. Mech. Sci. 32(10), 851–861 (1990)CrossRefGoogle Scholar
  6. 6.
    Schobeiri, M.T.: Näherungslösung der Navier-Stokes-Differentialgleichungen für eine zweidimensionale stationäre Laminarströmung konstanter Viskosität in konvexen und konkaven Diffusoren und Düsen. Zeitschrift für angewandte Mathematik und Physik, ZAMP 27, 9 (1976)zbMATHCrossRefGoogle Scholar
  7. 7.
    Milsaps, K., Pohlhausen, K.: Thermal distribution in Jeffery-Hamel Flow. Journal of Aeronautical Sciences 20, 187 (1953)Google Scholar
  8. 8.
    Spurk, J.H.: Fluid Mechanics. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  9. 9.
    Oseen, C.W.: Über die Stokes’sche Formel und über eine verwandte Aufgabe in Hydrodynamik. Ark. Nath. Astron. Fys. 6(29) (1910)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Meinhard T. Schobeiri

    There are no affiliations available

    Personalised recommendations