Advertisement

Inviscid Potential Flows

  • Meinhard T. Schobeiri
Chapter

Abstract

As discussed in Chapter 4, generally the motion of fluids encountered in engineering applications is described by the Navier-Stokes equations. Considering today’s computational fluid dynamics capabilities, it is possible to numerically solve the Navier- Stokes equations for laminar flows (no turbulent fluctuations), transitional flows (using appropriate intermittency models), and turbulent flow (utilizing appropriate turbulence models). Given today’s computational capabilities, one may argue at this juncture that there is no need to artificially subdivide the flow regime into different categories such as incompressible, compressible, viscid or inviscid ones. However, based on the degree of complexity of the flow under investigation, a computational simulation may take up to several days, weeks, and even months for direct Navier- Stokes simulations (DNS). The difficulties associated with solving the Navier-Stokes equations are caused by the existence of the viscosity terms in the Navier-Stokes equations.

Keywords

Circular Cylinder Stagnation Point Lift Force Conformal Transformation Potential Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In: 3. Internat. Math. Kongr. Heidelberg, 104 (1904), also in Prandtl, Gesammelte Abhandlungen, Springer, Heidelberg (1961)Google Scholar
  2. 2.
    Prandtl, L.: Über den Reibungswiderstand strömender Luft. Ergebnisse der Aerodynamischen Versuchsanstalt Göttingen. Gesammelte Abhandlung. Springer, Heidelberg (1961)Google Scholar
  3. 3.
    Prandtl, L.: Über die Entstehung von Wirbeln in idealen Flüssigkeiten, mit Anwendung auf die Tragflügeltheorie und andere Aufgaben. Vortr. Geb. Hydro- u. Aerodyn., Innsbruck, pp. 18–33 (1922), Nachdruck: Ges. Abhandlungen, pp. 696–713, Springer, Heidelberg (1961)Google Scholar
  4. 4.
    Betz, A.: Konforme Abbildung, 2nd edn. Springer, Heidelberg (1961)Google Scholar
  5. 5.
    Spurk, J.H.: Fluid Mechanics. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  6. 6.
    Prandtl, L., Tietjens, O.G.: Applied Hydro- and Aeromechanics. Dover Publications, Inc., New York (1934)Google Scholar
  7. 7.
    Wylie, R.: Advanced Engineering Mathemaitcs, 4th edn. McGraw-Hill, New York (1975)Google Scholar
  8. 8.
    Koppenfels, W., Stallmann, F.: Praxis der konformen Abbildung. Springer, Heidelberg (1959)zbMATHGoogle Scholar
  9. 9.
    Vavra, M.H.: Aero-Thermodynamics and Flow in Turbomachines. John Wiley & Sons, New York (1960)Google Scholar
  10. 10.
    Thompson, W. (Lord Kelvin): Vortex Motion. Trans. Roy. Soc. Edinbg 25, 217–260 (1868)Google Scholar
  11. 11.
    Helmholtz, H.: Über die Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Zeitschrift der reinen und der angewandten Mathematik 55, 25–55 (1858)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kotschin, N.J., Kiebel, L.A., Rose, N.W.: Theoretische Hydrodynamik, vol. I. Akademie-Verlag, Berlin (1954)Google Scholar
  13. 13.
    Schlichting, H., Trockenbrodt, E.: Aerodynamik des Flugzeuges, 2 volumes, 2nd edn. Springer, Heidelberg (1969)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Meinhard T. Schobeiri

    There are no affiliations available

    Personalised recommendations