# Boundary Layer Theory

• Meinhard T. Schobeiri
Chapter

## Abstract

In Chapter 9 we have shown that using the computational fluid dynamics (CFD), flow details in and around complex geometries can be predicted accuracy. The flow field calculation includes details very close to the wall, where the viscosity plays a significant role. In the absence of random fluctuations the (laminar) flow can be calculated with high accuracy. For predicting turbulent flows, however, turbulence models were required to be implemented into the Navier-Stokes equations to account for turbulence fluctuations. One of the more important tasks in engineering fluid mechanics is to predict the drag forces acting on the surfaces of components, among others, pipes, diffusers, nozzles, turbines, compressors, or wings of aircrafts. As seen in Chapter 5, the drag forces are produced by the fluid viscosity which causes the shear stress acting on the surface. The question that arises is how far from the surface the viscosity dominates the flow field. Prandtl [1] was the first to answer this question. Combining his physical intuition with experiments, he developed the concept of the boundary layer theory. In what follows the concept of the boundary layer theory for two dimensional flow is presented. Utilizing the two-dimensional boundary layer approximation by Prandtl, and for the sake of simplicity, we use the boundary layer nomenclature with the mean-flow component, V 1 ≡ u, V 2 ≡ v, as the significant velocities in x 1 ≡ x, and x 2 ≡ y -direction.

## Keywords

Boundary Layer Wall Shear Stress Turbulence Intensity Turbulent Boundary Layer Separation Bubble
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Prandtl, L.: Über Flüßigkeitsbewegung bei sehr kleiner Reibung. In: Verh. 3. Intern. Math. Kongr., pp. 484–491. Heidelberg (1904), Nachdruck: Ges. Abh. pp. 575–584, Springer, Heidelberg (1961)Google Scholar
2. 2.
Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908)Google Scholar
3. 3.
Falkner, V.M., Skan, S.W.: Some approximate solutions of the boundary layer equations. Phil. Mag. 12, 865–896 ARC RM 1314 (1930)Google Scholar
4. 4.
Hartree, D.: On an Equation Occurring in Falkner and Skan’s Approximate Treatment Of the Equation of the Boundary Layer. Proc. Camb., Phi.Soc. 33(Part II), 223–239 (1937)
5. 5.
Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)
6. 6.
Spurk, J.: Fluid Mechanics. Springer, Heidelberg (1997)
7. 7.
Pohlhausen, K.: Zur näherungsweisen Lösung der Differentialgleichungen der laminaren Reibungsschicht. ZAMM 1, 252–268 (1921)Google Scholar
8. 8.
Von Kármán, T.: Über laminare und turbulente Reibung. ZAMM 1, 233–253 (1921)Google Scholar
9. 9.
Ludwieg, H., Tillman, W.: Untersuchungen über die Wandschubspannung in turbulenten Reibungsschichten. Ingenieur Archiv 17(1950), 288–299 Summary and translation in NACA-TM-12185 (1949)
10. 10.
Coles, D.E.: The Law of the Wake in Turbulent Boundary Layer. Journal of Fluid Mechanics 1, 191–226 (1956)
11. 11.
White, F.M.: Viscose Fluid Flow. McGraw-Hill, New York (1974)Google Scholar
12. 12.
Lehman, K.: Untersuchungen turbulenter Grenzschichte. Dissertation, D17, Technische Hochschule Darmstadt (1979)Google Scholar
13. 13.
Rotta, J.,, C.: Turbulente Strömungen. B.C. Teubner-Verlag, Stuttgart (1972)
14. 14.
Truckenbrodt, E.: Fluidmechanik, vol. 2. Springer, Heidelberg (1980)Google Scholar
15. 15.
Pfeil, H., Sticksel, W.H.: Influence of the Pressure Gradient on the Law of the Wall. AIAA Journal 20(3), 342–346 (1981)Google Scholar
16. 16.
Pfeil, H., Amberg, T.: Differing Development of the Velocity Profiles of Three-dimensional Turbulent Boundary Layers. AIAA Journal 27, 1456–1459 (1989)
17. 17.
Prandtl, L.: Über den Reibungswiderstand strömender Luft. Ergebnisse, AVA, Göttingen, 3. Liefg. pp. 1-5, 4. Liefg. pp. 18-29 (1927)Google Scholar
18. 18.
Prandtl, L.: Zur turbulenten Strömung in Rohren, und längs Platten. AVA, Göttingen, vierte Serie (1932)Google Scholar
19. 19.
Nikuradse, J.: Gesetzmäßigkeit der turbulenten Strömung in glatten Rohren. Forsch. Arb. Ing.-Wesen 356 (1932)Google Scholar
20. 20.
Launder, B.E., And Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972)
21. 21.
Reichardt, H.: Gesetzmäßigkeiten der freien Turbulenz. In: VDI-Forsch. - Heft 414, 2nd edn., VDI-Verlag, Düsseldorf (1950)Google Scholar
22. 22.
Laufer, j, The Structure of Turbulence in Fully Developed Pipe Flow. NACA Report 1174 (1952)Google Scholar
23. 23.
Anderson, P.S., Kays, W.M., Moffat, R.J.: “The Turbulent Boundary layer on a Porous Plate: An experimental Study of the Fluid Mechanics for Adverse Free Stream Pressure Gradients, Report No.HMT-15, Department of Mechanical Engineering, Stanford University, CA (1972)Google Scholar
24. 24.
Wieghardt, K.: Über die turbulente Strömungen in Rohr und längs einer Platte. Zeitschrift für angewandte Mathematik und Mechanik, ZAMM 24, 294 (1944)
25. 25.
Sticksel, W.J.: Theoretische und experimentelle Untersuchungen turbulenter Grenzschichtprofile. Dissertation D 17, Technische Hochschule Darmstadt, Fachbereich Maschinenbau (1984)Google Scholar
26. 26.
Coles, D.E., Hirst, E.A.: Computation of turbulent Boundary Layers. AFSOR-IFP, -Stanford Conference, vol. II, Thermoscience Division, Stanford University, CA (1968)Google Scholar
27. 27.
Coles, D.E.: Law of the Wake in Turbulent Boundary Layer. Journal of Fluid Mechanics 1(2), 191–226 (1956)
28. 28.
Clauser, F.H.: Turbulent Boundary Layers in Adverse pressure Gradients. Journal of Aeronautical Sciences 21, 91–108 (1954)Google Scholar
29. 29.
Spurk, J.H.: Fluid Mechanics. Springer, Heidelberg (1997)
30. 30.
Mellor, G.I., Gibson, D.M.: Equilibrium Turbulent Boundary Layers. Journal Fluid Mechanics 24, 225–256 (1966)
31. 31.
Prandtl, L., Schlichting, H.: Werft, Reederei, Hafen 15, 1–4 (1934), Nachdruck: Gesammelte Abhandlung, pp. 649–662, Springer, Heidelberg (1961)Google Scholar
32. 32.
Falkner, V.M.: The Resistance of a Smooth Flat Plate with Turbulent Boundary Layer. Aircr, Eng 15, 65–69 (1943)Google Scholar
33. 33.
Blasius, H.: Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forschung. Arb. Ing-Wes 134 (1913)Google Scholar
34. 34.
Crawford, M.E., Kays, W.M.: NASA CR-2742 (1976)Google Scholar
35. 35.
Cebeci, T., Bradshaw, P.: Physical and computational Aspects of Convective Heat Transfer. Springer, Heidelberg (1974)Google Scholar
36. 36.
Kays, W.M., Crawford, M.E.: Konvective Heat and Mass Transfer. Series in Mechanical Engineering. McGraw-Hill, New York (1980)Google Scholar
37. 37.
Schobeiri, M.T., Chakka, P.: Prediction of turbine blade heat transfer and aerodynamics using unsteady boundary layer transition model. International Journal of Heat and Mass Transfer 45(2002), 815–829 (2002)
38. 38.
Chakka, P., Schobeiri, M.T.: Modeling of Unsteady Boundary Layer Transition on a Curved Plate under Periodic Unsteady Flow Condition: Aerodynamic and Heat Transfer Investigations. ASME Transactions, Journal of Turbo machinery 121, 88–97 (1999)
39. 39.
Schobeiri, M.T., Read, K., Lewalle, J.: Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation and Wavelet Analysis (a combined two-part paper). ASME Transactions, Journal of Fluids Engineering 125, 251–266 (2003)
40. 40.
John, J., Schobeiri, M.T.: A Simple and Accurate Method of Calibrating X-Probes. ASME Transactions, Journal of Fluid Engineering 115, 148–152 (1993)
41. 41.
Durst, F., Zanoun, E.-S., Pashstrapanska, M.: In- situ calibration of hot wires close to highly heat-conducting walls. Experiments in Fluids 31, 103–110 (2001)
42. 42.
Brun, H.H.: Hot-Wire Anemometry. Oxford University Press, Oxford (1995)Google Scholar
43. 43.
Hippensteele, S.A., Russell, L.M., Stepka, S.: Evaluation of A Method for Heat Transfer Measurements and Thermal Visualization Using a Composite of a Heater Element and Liquid Crystals. ASME Journal of Heat Transfer 105, 184–189 (1981)
44. 44.
Wright, L., Schobeiri, M.T.: The Effect of Periodic Unsteady Flow on Boundary Layer and Heat Transfer on a Curved Surface. ASME Transactions, Journal of Heat Transfer 120, 22–33 (1999)
45. 45.
Schobeiri, M.T.: Advances in Unsteady Aerodynamics and Boundary Layer Transition. Flow Phenomena in Nature, vol. 2, pp. 573–605. W.IT. Book, United Kingdom (2006)Google Scholar
46. 46.
Schobeiri, M.T., Chakka, P.: Prediction of turbine blade heat transfer and aerodynamics using unsteady boundary layer transition model. International Journal of Heat and Mass Transfer 45, 815–829 (2002)
47. 47.
Wilcox, D.: Turbulence Modeling for CFD. DCW Industries, Inc., 5354 Palm Drive, La Ca. nada, California 91011 (1993)Google Scholar
48. 48.
Schobeiri, M.T., Öztürk, B.: Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer development, Separation, and Re-attachment Along the Surface of a Low Pressure Turbine Blade. ASME 2004-GT-53929, presented at International Gas Turbine and Aero-Engine Congress and Exposition, Vienna, Austria, June 14-17, 2004, also published in ASME Transactions, Journal of Turbomachinery 126(4), 663–676 (2004)
49. 49.
Schobeiri, M.T., Öztürk, B., Ashpis, D.: Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-attachment along the Suction Surface of a Low Pressure Turbine Blade. ASME Paper GT2005-68600 (2005)Google Scholar
50. 50.
Private communication with Dr. A. Ameri, NASA Glen Research Center, Cleveland OHGoogle Scholar
51. 51.
Kaszeta, R.W., Simon, T.W.: Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes. NASA/CR— 2002-212104 December (2002)Google Scholar
52. 52.
Roberts, S.K., Yaras, M.I.: Effects of Periodic-Unsteadiness, Free-Stream Turbulence and Flow Reynolds Number on Separation-Bubble Transition, ASME GT-2003-38262 (2003)Google Scholar
53. 53.
Herbst, R.: Entwicklung von Strömungsgrenzschichten bei instationärer Zuströmung in Turbomaschinen. Dissertation D-17, Technische Hochschule Darmstadt, Germany (1980)Google Scholar
54. 54.
Pfeil, H., Herbst, R., Schröder, T.: Investigation of the Laminar- Turbulent Transition of Boundary Layers Disturbed by Wakes. ASME Journal of Engineering for Power 105, 130–137 (1983)
55. 55.
Schobeiri, M.T., Radke, R.: Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along The Concave Surface of A Curved Plate. ASME Paper No. 94-GT-327 (1994)Google Scholar
56. 56.
Halstead, D.E., Wisler, D.C., Okiishi, T.H., Walker, G.J., Hodson, H.P., Shin, H.-W.: Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4. ASME Journal of Turbomachinery 119, 225–237 (1997)
57. 57.
Schobeiri, M.T., Öztürk, B., Ashpis, D.: On the Physics of the Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions. ASME 2003-GT-38917, presented at International Gas Turbine and Aero-Engine Congress and Exposition, Atlanta, Georgia, June 16-19, 2003, also published in ASME Transactions Journal of Fluid Engineering 127, 503–513 (2005)
58. 58.
Schobeiri, M.T., Öztürk, B.: Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer development, Separation, and Re-attachment Along the Surface of a Low Pressure Turbine Blade. ASME 2004-GT-53929, presented at International Gas Turbine and Aero-Engine Congress and Exposition, Vienna, Austria, June 14-17, 2004, also published in ASME Transactions, Journal of Turbomachinery 126(4), 663–676 (2004)