Advertisement

Boundary Layer Theory

  • Meinhard T. Schobeiri
Chapter

Abstract

In Chapter 9 we have shown that using the computational fluid dynamics (CFD), flow details in and around complex geometries can be predicted accuracy. The flow field calculation includes details very close to the wall, where the viscosity plays a significant role. In the absence of random fluctuations the (laminar) flow can be calculated with high accuracy. For predicting turbulent flows, however, turbulence models were required to be implemented into the Navier-Stokes equations to account for turbulence fluctuations. One of the more important tasks in engineering fluid mechanics is to predict the drag forces acting on the surfaces of components, among others, pipes, diffusers, nozzles, turbines, compressors, or wings of aircrafts. As seen in Chapter 5, the drag forces are produced by the fluid viscosity which causes the shear stress acting on the surface. The question that arises is how far from the surface the viscosity dominates the flow field. Prandtl [1] was the first to answer this question. Combining his physical intuition with experiments, he developed the concept of the boundary layer theory. In what follows the concept of the boundary layer theory for two dimensional flow is presented. Utilizing the two-dimensional boundary layer approximation by Prandtl, and for the sake of simplicity, we use the boundary layer nomenclature with the mean-flow component, V 1 ≡ u, V 2 ≡ v, as the significant velocities in x 1 ≡ x, and x 2 ≡ y -direction.

Keywords

Boundary Layer Wall Shear Stress Turbulence Intensity Turbulent Boundary Layer Separation Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prandtl, L.: Über Flüßigkeitsbewegung bei sehr kleiner Reibung. In: Verh. 3. Intern. Math. Kongr., pp. 484–491. Heidelberg (1904), Nachdruck: Ges. Abh. pp. 575–584, Springer, Heidelberg (1961)Google Scholar
  2. 2.
    Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908)Google Scholar
  3. 3.
    Falkner, V.M., Skan, S.W.: Some approximate solutions of the boundary layer equations. Phil. Mag. 12, 865–896 ARC RM 1314 (1930)Google Scholar
  4. 4.
    Hartree, D.: On an Equation Occurring in Falkner and Skan’s Approximate Treatment Of the Equation of the Boundary Layer. Proc. Camb., Phi.Soc. 33(Part II), 223–239 (1937)CrossRefGoogle Scholar
  5. 5.
    Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Spurk, J.: Fluid Mechanics. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  7. 7.
    Pohlhausen, K.: Zur näherungsweisen Lösung der Differentialgleichungen der laminaren Reibungsschicht. ZAMM 1, 252–268 (1921)Google Scholar
  8. 8.
    Von Kármán, T.: Über laminare und turbulente Reibung. ZAMM 1, 233–253 (1921)Google Scholar
  9. 9.
    Ludwieg, H., Tillman, W.: Untersuchungen über die Wandschubspannung in turbulenten Reibungsschichten. Ingenieur Archiv 17(1950), 288–299 Summary and translation in NACA-TM-12185 (1949)zbMATHCrossRefGoogle Scholar
  10. 10.
    Coles, D.E.: The Law of the Wake in Turbulent Boundary Layer. Journal of Fluid Mechanics 1, 191–226 (1956)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    White, F.M.: Viscose Fluid Flow. McGraw-Hill, New York (1974)Google Scholar
  12. 12.
    Lehman, K.: Untersuchungen turbulenter Grenzschichte. Dissertation, D17, Technische Hochschule Darmstadt (1979)Google Scholar
  13. 13.
    Rotta, J.,, C.: Turbulente Strömungen. B.C. Teubner-Verlag, Stuttgart (1972)zbMATHGoogle Scholar
  14. 14.
    Truckenbrodt, E.: Fluidmechanik, vol. 2. Springer, Heidelberg (1980)Google Scholar
  15. 15.
    Pfeil, H., Sticksel, W.H.: Influence of the Pressure Gradient on the Law of the Wall. AIAA Journal 20(3), 342–346 (1981)Google Scholar
  16. 16.
    Pfeil, H., Amberg, T.: Differing Development of the Velocity Profiles of Three-dimensional Turbulent Boundary Layers. AIAA Journal 27, 1456–1459 (1989)CrossRefGoogle Scholar
  17. 17.
    Prandtl, L.: Über den Reibungswiderstand strömender Luft. Ergebnisse, AVA, Göttingen, 3. Liefg. pp. 1-5, 4. Liefg. pp. 18-29 (1927)Google Scholar
  18. 18.
    Prandtl, L.: Zur turbulenten Strömung in Rohren, und längs Platten. AVA, Göttingen, vierte Serie (1932)Google Scholar
  19. 19.
    Nikuradse, J.: Gesetzmäßigkeit der turbulenten Strömung in glatten Rohren. Forsch. Arb. Ing.-Wesen 356 (1932)Google Scholar
  20. 20.
    Launder, B.E., And Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972)zbMATHGoogle Scholar
  21. 21.
    Reichardt, H.: Gesetzmäßigkeiten der freien Turbulenz. In: VDI-Forsch. - Heft 414, 2nd edn., VDI-Verlag, Düsseldorf (1950)Google Scholar
  22. 22.
    Laufer, j, The Structure of Turbulence in Fully Developed Pipe Flow. NACA Report 1174 (1952)Google Scholar
  23. 23.
    Anderson, P.S., Kays, W.M., Moffat, R.J.: “The Turbulent Boundary layer on a Porous Plate: An experimental Study of the Fluid Mechanics for Adverse Free Stream Pressure Gradients, Report No.HMT-15, Department of Mechanical Engineering, Stanford University, CA (1972)Google Scholar
  24. 24.
    Wieghardt, K.: Über die turbulente Strömungen in Rohr und längs einer Platte. Zeitschrift für angewandte Mathematik und Mechanik, ZAMM 24, 294 (1944)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sticksel, W.J.: Theoretische und experimentelle Untersuchungen turbulenter Grenzschichtprofile. Dissertation D 17, Technische Hochschule Darmstadt, Fachbereich Maschinenbau (1984)Google Scholar
  26. 26.
    Coles, D.E., Hirst, E.A.: Computation of turbulent Boundary Layers. AFSOR-IFP, -Stanford Conference, vol. II, Thermoscience Division, Stanford University, CA (1968)Google Scholar
  27. 27.
    Coles, D.E.: Law of the Wake in Turbulent Boundary Layer. Journal of Fluid Mechanics 1(2), 191–226 (1956)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Clauser, F.H.: Turbulent Boundary Layers in Adverse pressure Gradients. Journal of Aeronautical Sciences 21, 91–108 (1954)Google Scholar
  29. 29.
    Spurk, J.H.: Fluid Mechanics. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  30. 30.
    Mellor, G.I., Gibson, D.M.: Equilibrium Turbulent Boundary Layers. Journal Fluid Mechanics 24, 225–256 (1966)CrossRefGoogle Scholar
  31. 31.
    Prandtl, L., Schlichting, H.: Werft, Reederei, Hafen 15, 1–4 (1934), Nachdruck: Gesammelte Abhandlung, pp. 649–662, Springer, Heidelberg (1961)Google Scholar
  32. 32.
    Falkner, V.M.: The Resistance of a Smooth Flat Plate with Turbulent Boundary Layer. Aircr, Eng 15, 65–69 (1943)Google Scholar
  33. 33.
    Blasius, H.: Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forschung. Arb. Ing-Wes 134 (1913)Google Scholar
  34. 34.
    Crawford, M.E., Kays, W.M.: NASA CR-2742 (1976)Google Scholar
  35. 35.
    Cebeci, T., Bradshaw, P.: Physical and computational Aspects of Convective Heat Transfer. Springer, Heidelberg (1974)Google Scholar
  36. 36.
    Kays, W.M., Crawford, M.E.: Konvective Heat and Mass Transfer. Series in Mechanical Engineering. McGraw-Hill, New York (1980)Google Scholar
  37. 37.
    Schobeiri, M.T., Chakka, P.: Prediction of turbine blade heat transfer and aerodynamics using unsteady boundary layer transition model. International Journal of Heat and Mass Transfer 45(2002), 815–829 (2002)zbMATHCrossRefGoogle Scholar
  38. 38.
    Chakka, P., Schobeiri, M.T.: Modeling of Unsteady Boundary Layer Transition on a Curved Plate under Periodic Unsteady Flow Condition: Aerodynamic and Heat Transfer Investigations. ASME Transactions, Journal of Turbo machinery 121, 88–97 (1999)CrossRefGoogle Scholar
  39. 39.
    Schobeiri, M.T., Read, K., Lewalle, J.: Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation and Wavelet Analysis (a combined two-part paper). ASME Transactions, Journal of Fluids Engineering 125, 251–266 (2003)CrossRefGoogle Scholar
  40. 40.
    John, J., Schobeiri, M.T.: A Simple and Accurate Method of Calibrating X-Probes. ASME Transactions, Journal of Fluid Engineering 115, 148–152 (1993)CrossRefGoogle Scholar
  41. 41.
    Durst, F., Zanoun, E.-S., Pashstrapanska, M.: In- situ calibration of hot wires close to highly heat-conducting walls. Experiments in Fluids 31, 103–110 (2001)CrossRefGoogle Scholar
  42. 42.
    Brun, H.H.: Hot-Wire Anemometry. Oxford University Press, Oxford (1995)Google Scholar
  43. 43.
    Hippensteele, S.A., Russell, L.M., Stepka, S.: Evaluation of A Method for Heat Transfer Measurements and Thermal Visualization Using a Composite of a Heater Element and Liquid Crystals. ASME Journal of Heat Transfer 105, 184–189 (1981)CrossRefGoogle Scholar
  44. 44.
    Wright, L., Schobeiri, M.T.: The Effect of Periodic Unsteady Flow on Boundary Layer and Heat Transfer on a Curved Surface. ASME Transactions, Journal of Heat Transfer 120, 22–33 (1999)CrossRefGoogle Scholar
  45. 45.
    Schobeiri, M.T.: Advances in Unsteady Aerodynamics and Boundary Layer Transition. Flow Phenomena in Nature, vol. 2, pp. 573–605. W.IT. Book, United Kingdom (2006)Google Scholar
  46. 46.
    Schobeiri, M.T., Chakka, P.: Prediction of turbine blade heat transfer and aerodynamics using unsteady boundary layer transition model. International Journal of Heat and Mass Transfer 45, 815–829 (2002)zbMATHCrossRefGoogle Scholar
  47. 47.
    Wilcox, D.: Turbulence Modeling for CFD. DCW Industries, Inc., 5354 Palm Drive, La Ca. nada, California 91011 (1993)Google Scholar
  48. 48.
    Schobeiri, M.T., Öztürk, B.: Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer development, Separation, and Re-attachment Along the Surface of a Low Pressure Turbine Blade. ASME 2004-GT-53929, presented at International Gas Turbine and Aero-Engine Congress and Exposition, Vienna, Austria, June 14-17, 2004, also published in ASME Transactions, Journal of Turbomachinery 126(4), 663–676 (2004)CrossRefGoogle Scholar
  49. 49.
    Schobeiri, M.T., Öztürk, B., Ashpis, D.: Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-attachment along the Suction Surface of a Low Pressure Turbine Blade. ASME Paper GT2005-68600 (2005)Google Scholar
  50. 50.
    Private communication with Dr. A. Ameri, NASA Glen Research Center, Cleveland OHGoogle Scholar
  51. 51.
    Kaszeta, R.W., Simon, T.W.: Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes. NASA/CR— 2002-212104 December (2002)Google Scholar
  52. 52.
    Roberts, S.K., Yaras, M.I.: Effects of Periodic-Unsteadiness, Free-Stream Turbulence and Flow Reynolds Number on Separation-Bubble Transition, ASME GT-2003-38262 (2003)Google Scholar
  53. 53.
    Herbst, R.: Entwicklung von Strömungsgrenzschichten bei instationärer Zuströmung in Turbomaschinen. Dissertation D-17, Technische Hochschule Darmstadt, Germany (1980)Google Scholar
  54. 54.
    Pfeil, H., Herbst, R., Schröder, T.: Investigation of the Laminar- Turbulent Transition of Boundary Layers Disturbed by Wakes. ASME Journal of Engineering for Power 105, 130–137 (1983)CrossRefGoogle Scholar
  55. 55.
    Schobeiri, M.T., Radke, R.: Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along The Concave Surface of A Curved Plate. ASME Paper No. 94-GT-327 (1994)Google Scholar
  56. 56.
    Halstead, D.E., Wisler, D.C., Okiishi, T.H., Walker, G.J., Hodson, H.P., Shin, H.-W.: Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4. ASME Journal of Turbomachinery 119, 225–237 (1997)CrossRefGoogle Scholar
  57. 57.
    Schobeiri, M.T., Öztürk, B., Ashpis, D.: On the Physics of the Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions. ASME 2003-GT-38917, presented at International Gas Turbine and Aero-Engine Congress and Exposition, Atlanta, Georgia, June 16-19, 2003, also published in ASME Transactions Journal of Fluid Engineering 127, 503–513 (2005)CrossRefGoogle Scholar
  58. 58.
    Schobeiri, M.T., Öztürk, B.: Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer development, Separation, and Re-attachment Along the Surface of a Low Pressure Turbine Blade. ASME 2004-GT-53929, presented at International Gas Turbine and Aero-Engine Congress and Exposition, Vienna, Austria, June 14-17, 2004, also published in ASME Transactions, Journal of Turbomachinery 126(4), 663–676 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Meinhard T. Schobeiri

    There are no affiliations available

    Personalised recommendations