Affine Invariant Hyperspectral Image Descriptors Based upon Harmonic Analysis

  • Pattaraporn Khuwuthyakorn
  • Antonio Robles-Kelly
  • Jun Zhou
Chapter
Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 1)

Abstract

This chapter focuses on the problem of recovering a hyperspectral image descriptor based upon harmonic analysis. It departs from the use of integral transforms to model hyperspectral images in terms of probability distributions. This provides a link between harmonic analysis and affine geometric transformations between object surface planes in the scene. Moreover, the use of harmonic analysis permits the study of these descriptors in the context of Hilbert spaces. This, in turn, provides a connection to functional analysis to capture the spectral cross-correlation between bands in the image for the generation of a descriptor with a high energy compaction ratio. Thus, descriptors can be computed based upon orthogonal bases capable of capturing the space and wavelength correlation for the spectra in the hyperspectral imagery under study. We illustrate the utility of our descriptor for purpose of object recognition on a hyperspectral image dataset of real-world objects and compare our results to those yielded using an alternative.

Keywords

Hyperspectral image descriptor Harmonic analysis Heavy-tailed distributions 

References

  1. 1.
    Aloimonos, J., Swain, M.J.: Shape from patterns: regularization. Int. J. Comput. Vis. 2, 171–187 (1988)CrossRefGoogle Scholar
  2. 2.
    Asmussen, S., Binswanger, K., Hojgaard, B.: Rare events simulation for heavy-tailed distributions. Bernoulli 6(2), 303–322 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., Werman, M.: Texture mixing and texture movie synthesis using statistical learning. IEEE Trans. Visual. Comput. Graph. 7(2), 120–135 (2001)CrossRefGoogle Scholar
  4. 4.
    Bracewell, R.N., Chang, K.-.Y., Jha, A.K., Wang, Y.-.H.: Affine theorem for two-dimensional Fourier transform. Electron. Lett. 29, 304–309 (1993)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Wang, J.Z., Krovetz, R.: CLUE: cluster-based retrieval of images by unsupervised learning. IEEE Trans. Image Process. 14(8), 1187–1201 (2005)CrossRefGoogle Scholar
  6. 6.
    Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: Proceedings of the IEEE 11th International Conference on Computer Vision, 2007, ICCV 2007, pp. 1–8 (2007)Google Scholar
  7. 7.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)MATHCrossRefGoogle Scholar
  8. 8.
    Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On kernel-target alignment. Adv. Neural Inf. Process. Syst. 14, 367–373 (2001)Google Scholar
  9. 9.
    Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51(2), 91–109 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Dundar, M.M., Landgrebe, D.A.: Toward an optimal supervised classifier for the analysis of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 42(1), 271–277 (2004)CrossRefGoogle Scholar
  11. 11.
    Fazekas, S., Chetverikov, D.: Normal versus complete flow in dynamic texture recognition: a comparative study. In: Proceedings of the Fourth International Workshop Texture Analysis and Synthesis, pp. 37–42 (2005)Google Scholar
  12. 12.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, New York (1990)MATHGoogle Scholar
  13. 13.
    Gårding, J.: Direct estimation of shape from texture. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1202–1208 (1993)CrossRefGoogle Scholar
  14. 14.
    Ghanem, B., Ahuja, N.: Phase based modelling of dynamic textures. In: Proceedings of the IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (2007)Google Scholar
  15. 15.
    Ikeuchi, K.: Shape from regular patterns. Artif. Intell. 22(1), 49–75 (1984)CrossRefGoogle Scholar
  16. 16.
    Jimenez, L.O., Landgrebe, D.A.: Hyperspectral data analysis and feature reduction via projection pursuit. IEEE Trans. Geosci. Rem. Sens. 37(6), 2653–2667 (1999)CrossRefGoogle Scholar
  17. 17.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)MATHGoogle Scholar
  18. 18.
    Kanatani, K., Chou, T.: Shape from texture: general principle. Artif. Intell. 38(1), 1–48 (1989)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  20. 20.
    Landgrebe, D.: Hyperspectral image data analysis. Signal Process. Mag. 19(1), 17–28 (2002)CrossRefGoogle Scholar
  21. 21.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178 (2006)Google Scholar
  22. 22.
    Li, F.-F., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 524–531 (2005)Google Scholar
  23. 23.
    Malik, J., Rosenholtz, R.: Computing local surface orientation and shape from texture for curved surfaces. Int. J. Comput. Vis. 23(2), 149–168 (1997)CrossRefGoogle Scholar
  24. 24.
    Nilsback, M., Zisserman, A.: A visual vocabulary for flower classification. In: Proceedings of the 2006. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1447–1454 (2006)Google Scholar
  25. 25.
    Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168 (2006)Google Scholar
  26. 26.
    Otsuka, K., Horikoshi, T., Suzuki, S., Fujii, M.: Feature extraction of temporal texture based on spatiotemporal motion trajectory. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, p. 1047 (1988)Google Scholar
  27. 27.
    Péteri, R., Chetverikov, D.: A brief survey of dynamic texture description and recognition. In: Computer Recognition Systems, pp. 17–26 (2005)Google Scholar
  28. 28.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–71 (2000)MATHCrossRefGoogle Scholar
  29. 29.
    Quelhas, P., Monay, F., Odobez, J., Gatica-Perez, D., Tuytelaars, T., Van Gool, L.: Modelling scenes with local descriptors and latent aspects. In: Proceedings of the 10th IEEE International Conference on Computer Vision, pp. 883–890 (2005)Google Scholar
  30. 30.
    Rahman, A., Murshed, M.: A robust optical flow estimation algorithm for temporal textures. In: Proceedings of the 2005 International Conference on Information Technology: Coding and Computing (ITCC’05), vol. 2, pp. 72–76 (2005)Google Scholar
  31. 31.
    Randen, T., Husoy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)CrossRefGoogle Scholar
  32. 32.
    Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press Professional, Inc., San Diego (1990)MATHGoogle Scholar
  33. 33.
    Ribeiro, E., Hancock, E.R.: Shape from periodic texture using the eigenvectors of local affine distortion. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1459–1465 (2001)CrossRefGoogle Scholar
  34. 34.
    Sengupta, K., Boyer, K.L.: Using geometric hashing with information theoretic clustering for fast recognition from a large CAD modelbase. In: Proceedings of the IEEE International Symposium on Computer Vision, pp. 151–156 (1995)Google Scholar
  35. 35.
    Sheikh, Y., Haering, N., Shah, M.: Shape from dynamic texture for planes. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2285–2292 (2006)Google Scholar
  36. 36.
    Shokoufandeh, A., Dickinson, S.J., Siddiqi, K., Zucker, S.W.: Indexing using a spectral encoding of topological structure. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 2, pp. 491–497 (1999)Google Scholar
  37. 37.
    Sivic, J., Zisserman, A.: Video Google: text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1470–1477 (2003)Google Scholar
  38. 38.
    Sneddon, I.N.: Fourier Transforms. Dover, New York (1995)Google Scholar
  39. 39.
    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)MATHGoogle Scholar
  40. 40.
    Super, B.J., Bovik, A.C.: Shape from texture using local spectral moments. IEEE Trans. Pattern Anal. Mach. Intell. 17(4), 333–343 (1995)CrossRefGoogle Scholar
  41. 41.
    Varma, M., Ray, D.: Learning the discriminative power-invariance trade-off. In: Proceedings of the International Conference in Computer Vision (ICCV2007), pp. 1–8 (2007)Google Scholar
  42. 42.
    Young, N.: An Introduction to Hilbert Space. Cambridge University Press, Cambridge (1988)MATHGoogle Scholar
  43. 43.
    Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pattaraporn Khuwuthyakorn
    • 1
    • 2
    • 3
  • Antonio Robles-Kelly
    • 1
    • 2
  • Jun Zhou
    • 1
    • 2
  1. 1.Research School of Information Sciences and Engineering (RSISE)Australian National UniversityCanberraAustralia
  2. 2.National ICT Australia (NICTA)CanberraAustralia
  3. 3.Cooperative Research Centre for National Plant BiosecurityBruceAustralia

Personalised recommendations