Earthquake Risks: Hazard Assessment of the City of Santiago de Chile

  • Marco Pilz
  • Stefano Parolai
  • Joachim Zschau
  • Adriana Perez
  • Jaime Campos
Chapter

Abstract

Santiago de Chile is located at the top of a deep sedimentary basin close to the active tectonic San Ramón Fault. In the case of rupture, this fault at the eastern edge of the city can generate earthquakes with a magnitude of up to 7.1. As seen in past earthquakes, the soil characteristics within the Santiago basin change the level of seismic hazard, since they heavily modify the level of ground shaking over short distances. This chapter takes a closer look at the relationship between these parameters and their influence on local site conditions. The methodology it presents to provide a rough estimate of the seismic hazard combines a high resolution map of the fundamental resonance frequency of the soil and a 3D shear wave velocity model for the northern part of the city. By comparing the results with mapped intensities of recent events, the chapter estimates the areas of the city that are more endangered and recommends a more thorough investigation for these parts of the basin. Although the findings cannot be generalized for all possible earthquakes affecting the city, it concludes with some practical recommendations such as retrofitting the existing building stock in areas particularly under threat of seismic hazard.

Keywords

Earthquakes Fundamental resonance frequency Microzonation Soil parameters Velocity model 

References

  1. Arai, H., & Tokimatsu, K. (2000). Effects of Rayleigh and Love waves on microtremor H/V spectra. Proceedings 12th World Conference on Earthquake Engineering paper 2232.Google Scholar
  2. Arai, H., & Tokimatsu, K. (2004). S-wave velocity profiling by inversion of microtremor H/V spectrum. Bulletin of the Seismological Society of America, 94, 53–63.CrossRefGoogle Scholar
  3. Araneda, M., Avendano, F., & Merlo, C. (2000). Gravity model of the basin in Santiago, Stage III. Proceedings of the 9th Chilenian Geological Congress, 2, pp. 404–408, Sociedad Geólogica de Chile, Santiago.Google Scholar
  4. Astroza, M., & Monge, J. (1991). Seismic microzones in the city of Santiago. Relation damage-geological unit. Proceedings of the 4th International Conference on Seismic Zonation, Stanford, pp. 595–599.Google Scholar
  5. Astroza, M., Moroni, M., & Kupfer, M. (1993). Calificación sísmica de edificios de albañilería de ladrillo confinada con elementos de hormigón armado, Memorias de las XXVI Jornadas Sudamericanas de Ingeniería Estructural, 1, Montevideo, Asociacion Sudamerican de Ingenieros Estructurales.Google Scholar
  6. Bard, P. Y. (2004). The SESAME project. An overview and main results. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Paper 2207.Google Scholar
  7. Bard, P. Y., & Bouchon, M. (1985). The two-dimensional resonance of sediment filled valleys. Bulletin of the Seismological Society of America, 75, 519–541.Google Scholar
  8. Barrientos, S. (1981). Regionalización sísmica de Chile. MSc thesis, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago.Google Scholar
  9. Barrientos, S., Vera, E., Alvarado, P., & Monfret, T. (2004). Crustal seismicity in central Chile. Journal of South American Earth Sciences, 16, 759–768.CrossRefGoogle Scholar
  10. Bielak, J., Xu, J., & Ghattas, O. (1999). Earthquake ground motion and structural response in alluvial valleys. Journal of Geotechnical and Geoenvironmental Engineering, 125, 413–423.CrossRefGoogle Scholar
  11. Borcherdt, R. D. (1994). Estimates of site-dependent response spectra for design (methodology and justification). Earthquake Spectra, 10, 617–654.CrossRefGoogle Scholar
  12. Bouchon, M. (1973). Effects of topography on surface motion. Bulletin of the Seismological Society of America, 63, 615–622.Google Scholar
  13. Bravo, R. D. (1992). Estudio geofisico de los suelos de fundación para un zonificacion sísmic del area urbana de Santiago Norte. PhD thesis, Universidad de Chile, Santiago.Google Scholar
  14. Building Seismic Safety Council (BSSC) (2004). NEHRP recommended provisions for seismic regulations for new buildings and other structures. 2003 edition (FEMA 450), Building Seismic Safety Council, National Institute of Building Sciences, Washington, DC.Google Scholar
  15. Cardona, O. D. (2004). The need for rethinking the concepts of vulnerability and risk from a holistic perspective: A necessary review and criticism for effective risk management. In G. Bankoff, G. Frerks, & D. Hilhorst (Eds.), Mapping vulnerability: Disasters, development and people. London: Earthscan.Google Scholar
  16. Çelebi, M. (1987). Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake. Bulletin of the Seismological Society of America, 77, 1147–1167.Google Scholar
  17. CEN. (2003). Eurocode (EC) 8: Design of structures for earthquake resistance – Part 1 general rules, seismic actions and rules for buildings, EN 1998-1. Brussels: CEN.Google Scholar
  18. Chávez-García, F. J., Stephenson, W. R., & Rodríguez, M. (1999). Lateral propagation effects observed at Parkway, New Zealand: A case history to compare 1D vs. 2D effects. Bulletin of the Seismological Society of America, 89, 718–732.Google Scholar
  19. Edwards, H. H. (1951). Lessons in structural safety learned from the 1949 Northwest earthquake. Western Construction, 26, 70–74.Google Scholar
  20. Fäh, D., Kind, F., & Giardini, D. (2001). A theoretical investigation of average H/V ratios. Geophysical Journal International, 145, 535–549.CrossRefGoogle Scholar
  21. Fäh, D., Kind, F., & Giardini, D. (2003). Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. Journal of Seismology, 7, 449–467.CrossRefGoogle Scholar
  22. Fäh, D., Steimen, S., Oprsal, I., Ripperger, J., Wössner, J., Schatzmann, R., Kästli, P., Spottke, I., & Huggenberger, P. (2006). The earthquake of 250 A. D. in Augusta Raurica, a real event with 3D site effect? Journal of Seismology, 10, 459–477.CrossRefGoogle Scholar
  23. Field, E. H., & Jacob, K. H. (1995). A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bulletin of the Seismological Society of America, 85, 1127–1143.Google Scholar
  24. Harkrider, D. G. (1964). Surface waves in multilayered elastic media, part 1. Bulletin of the Seismological Society of America, 54, 627–679.Google Scholar
  25. Holzer, T. L., Padovani, A. C., Bennett, M. J., Noce, T. E., & Tinsely, J. C. (2005). Mapping vs30 site classes. Earthquake Spectra, 21, 353–370.CrossRefGoogle Scholar
  26. Horike, M., Zhao, B., & Kawase, H. (2001). Comparison of site response characteristics inferred from microtremor and earthquake shear waves. Bulletin of the Seismological Society of America, 91, 1526–1536.CrossRefGoogle Scholar
  27. International Conference on Building Officials (1997). Uniform building code. International Conference on Building Officials, Whittier.Google Scholar
  28. Kelleher, J. A. (1972). Rupture zones of large South American earthquakes and some predictions. Journal of Geophysical Research, 77, 2087–2103.CrossRefGoogle Scholar
  29. Lermo, J., & Chavez-Garcia, F. J. (1994). Are microtremors useful in site response evaluation? Bulletin of the Seismological Society of America, 84, 1350–1364.Google Scholar
  30. McGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute, MNO-10.Google Scholar
  31. Moczo, P., & Bard, P.-Y. (1993). Wave diffraction, amplification and differential motion near strong lateral discontinuities. Bulletin of the Seismological Society of America, 83, 85–106.Google Scholar
  32. Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Reports of the Railway Technical Research Institute, 30, 25–33.Google Scholar
  33. Nishenko, S. (1985). Seismic potential for large and great interplate earthquakes along the Chilean and Southern Peruvian margins of South America: A quantitative reappraisal. Journal of Geophysical Research, 90, 3589–3615.CrossRefGoogle Scholar
  34. Paolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earthquake Engineering and Structural Dynamics, 31, 1831–1853.CrossRefGoogle Scholar
  35. Park, S., & Elrick, S. (1998). Predictions of shear wave velocities in southern California using surface geology. Bulletin of the Seismological Society of America, 88, 677–685.Google Scholar
  36. Parolai, S., Richwalski, S., Milkereit, C., & Fäh, D. (2006). S-wave velocity profiles for earthquake engineering purposes for the Cologne area (Germany). Bulletin of Earthquake Engineering, 4, 65–94.CrossRefGoogle Scholar
  37. Pilz, M., Parolai, S., Leyton, F., Campos, J., & Zschau, J. (2009). A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban area of Santiago de Chile. Geophysical Journal International, 178, 713–728.CrossRefGoogle Scholar
  38. Pilz, M., Parolai, S., Picozzi, M., Wang, R., Leyton, F., Campos, J., & Zschau, J. (2010). Shear wave velocity model of the Santiago de Chile basin derived from ambient noise measurements: A comparison of proxies for seismic site conditions and amplification. Geophysical Journal International, 182, 355–367.Google Scholar
  39. Ramírez, D. (1988). Estimación de algunos parámetros focales de grandes terremotos históricos chilenos. MSc thesis. Geofísica, Universidad de Chile, Santiago.Google Scholar
  40. Reiter, L. (1990). Earthquake hazard analysis. New York: Columbia University Press.Google Scholar
  41. Sánchez-Sesma, F. J., & Luzon, F. (1995). Seismic response of three-dimensional alluvial valleys for incident P, S, and Rayleigh waves. Bulletin of the Seismological Society of America, 85, 269–284.Google Scholar
  42. Scherbaum, F., Hinzen, K. G., & Ohrnberger, M. (2003). Determination of shallow shear wave velocity profiles in the Cologne Germany area using ambient vibrations. Geophysical Journal International, 152, 597–612.CrossRefGoogle Scholar
  43. Semblat, J. F., Duval, A. M., & Dangla, P. (2002). Seismic site effects in a deep alluvial basin: Numerical analysis by the boundary element method. Computers and Geotechnics, 29, 573–585.CrossRefGoogle Scholar
  44. Smith, W. (2005). The challenge of earthquake risk assessment. Seismological Research Letters, 76, 415–416.CrossRefGoogle Scholar
  45. Tokimatsu, K., & Miyadera, Y. (1992). Characteristics of Rayleigh waves in microtremors and their relation to underground structures. Journal of Structural Engineering, 439, 81–87.Google Scholar
  46. Wang, Z. (2006). Understanding seismic hazard and risk assessments: An example in the New Madrid Seismic Zone of the central United States. Proceedings of the 8th National conference on earthquake engineering, San Francisco, Paper 416.Google Scholar
  47. Wang, Z. (2007) Seismic hazard and risk assessment in the intraplate environment: The new Madrid seismic zone of the central United States. In S. Stein & S. Mazzotti (Eds.), Continental intraplate earthquakes: Science, hazard, and policy issues, Geological Society of America, Special Paper 425, pp. 363–373.Google Scholar
  48. Wills, C. J., Petersen, M. D., Bryant, W. A., Reichle, M. S., Saucedo, G. J., Tan, S. S., Taylor, G. C., & Treiman, J. A. (2000). A site-conditions map for California based on geology and shear wave velocity. Bulletin of the Seismological Society of America, 90, 187–208.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marco Pilz
    • 1
  • Stefano Parolai
    • 1
  • Joachim Zschau
    • 1
  • Adriana Perez
    • 1
  • Jaime Campos
    • 1
  1. 1.Department 2 Physics of the EarthHelmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations