Air Quality and Health: A Hazardous Combination of Environmental Risks

  • Peter Suppan
  • Ulrich Franck
  • Rainer Schmitz
  • Frank Baier


This chapter addresses the link between Santiago’s transport sector and its corresponding emissions, on the one hand, and the impact on the health of its citizens, on the other. The dispersion of pollutants at the micro and meso scale is based on an integrated approach that incorporates different platforms – satellite data, in situ measurements and emission data. Specific attention is paid to traffic emission estimates based on the traffic flow, fleet composition and emission factors in the Metropolitan Area of Santiago de Chile. Health-related indicators such as PM10, O3 and NOx are discussed and their dispersion throughout the city analysed in order to arrive at a comprehensive health impact assessment. The possible development of PM10 levels forms the basis of a detailed discussion on adverse health effects in the future.


Adverse health effect Air quality assessment Micro/meso scale modelling Particles Traffic emissions 



The authors are extremely grateful for assistance from and helpful discussions with the Departamento de Estadísticas e Información de Salud (DEIS) of the Ministerio de Salud (MinSal, Gobierno de Chile). Furthermore we would like to thank Martin Nogalski, Johannes Werhahn, Renate Forkel and Ulrich Uhrner for their support with the modelling work (MODEM, GRAL and WRF/chem.).


  1. Alastuey, A., Querol, X., Rodriguez, S., Plana, F., Lopez-Soler, A., Ruiz, C., & Mantilla, E. (2004). Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. Atmospheric Environment, 38, 4979–4992.CrossRefGoogle Scholar
  2. Beelen, R., Hoek, G., Pebesma, E., Vienneau, D., de Hoogh, K., & Briggs, D. J. (2009). Mapping of background air pollution at a fine spatial scale across the European Union. Science of the Total Environment, 407, 1852–1867.CrossRefGoogle Scholar
  3. Bell, M. L., Dominici, F., Ebisu, K., Zeger, S. L., & Samet, J. M. (2007). Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environmental Health Perspectives, 115, 989–995.CrossRefGoogle Scholar
  4. Berner, A., Galambos, Z., Ctyroky, P., Fruhauf, P., Hitzenberger, R., Gomiscek, B., Hauck, H., Preining, O., & Puxbaum, H. (2004). On the correlation of atmospheric aerosol components of mass size distributions in the larger region of a central European city. Atmospheric Environment, 38, 3959–3970.CrossRefGoogle Scholar
  5. Boldo, E., Medina, S., LeTertre, A., Hurley, F., Mucke, H. G., Ballester, F., Aguilera, I., & Eilstein, D. (2006). Apheis: Health impact assessment of long-term exposure to PM2.5 in 23 European cities. European Journal of Epidemiology, 21(6), 449–458.CrossRefGoogle Scholar
  6. Brajer, V., & Mead, R. W. (2004). Valuing air pollution mortality in China’s cities. Urban Studies, 41(8), 1567–1585.CrossRefGoogle Scholar
  7. Breitner, S., Stölzel, M., Cyrys, J., Pitz, M., Wölke, G., Kreyling, W., Küchenhoff, H., Heinrich, J., Wichmann, H.-E., & Peters, A. (2009). Short-term mortality rates during a decade of improved air quality in Erfurt, Germany. Environmental Health Perspectives, 117(3), 448–454.Google Scholar
  8. Cakmak, S., Dales, R. E., & Vidal, C. B. (2007). Air pollution and mortality in Chile: Susceptibility among the elderly. Environmental Health Perspectives, 115(4), 524–527.CrossRefGoogle Scholar
  9. CONAMA (2003). Area Descontaminacion Atmosferica Conama Region Metropolitana de Santiago. Accessed 2010.
  10. CONAMA (2004). Reformulación y Actualización Plan de Prevención y Descontaminación Atmosférica para la Región Metropolitana (PPDA - DS.58/2004). Accessed 2010.
  11. CONAMA (2006) Informe Seguimiento Plan de Prevencion y de Descontaminacion Para La Region Metropolitana. Accessed 2010.
  12. CONAMA (2007). Actualización del Inventario de Emisiones de Contaminantes Atmosféricos en la Región Metropolitana 2005. Accessed 2010.
  13. Corvalán, R., Osses, M., & Urrutia, C. (2002). Hot emission model for mobile sources: Application to the metropolitan region of the city of Santiago-Chile. Journal of the Air & Waste management Association, 52(2), 167–174.Google Scholar
  14. Duzgoren-Aydin, N. S., Wong, C. S. C., Aydin, A., Song, Z., You, M., & Li, X. D. (2006). Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Environmental Geochemistry and Health, 28, 375–391.CrossRefGoogle Scholar
  15. European Commission (1999). Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides. Official Journal of the European Communities, L 163, 41–60.Google Scholar
  16. Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957–6975.CrossRefGoogle Scholar
  17. Gurjar, B. R., & Lelieveld, J. (2005). New directions: Megacities and global change. Atmospheric Environment, 39, 391–393.CrossRefGoogle Scholar
  18. Gurjar, B. R., Jain, A., Sharma, A., Agarwal, A., Gupta, P., Nagpure, A. S., & Lelieveld, J. (2010). Human health risks in megacities due to air pollution. Atmospheric Environment, 44, 4606–4613.CrossRefGoogle Scholar
  19. Harrison, R. M., & Jones, A. M. (2005). Multisite study of particle number concentrations in urban air. Environmental Science Technology, 39, 6063–6070.CrossRefGoogle Scholar
  20. Houthuijs, D., Breugelmans, O., Hoek, G., Vaskovi, E., Mihalikova, E., Pastuszka, J. S., Jirik, V., Sachelarescu, S., Lolova, D., Meliefste, K., Uzunova, E., Marinescu, C., Volf, J., de Leeuw, F., van de Wiel, H., Fletcher, T., Lebret, E., & Brunekreef, B. (2001). PM10 and PM2.5 concentrations in Central and Eastern Europe: Results from the Cesar study. Atmospheric Environment, 35, 2757–2771.CrossRefGoogle Scholar
  21. Krzyzanowski, M. (2008). WHO air quality guidelines for Europe. Journal of Toxicology Environmental Health A, 71, 47–50.CrossRefGoogle Scholar
  22. Krzyzanowski, M., & Cohen, A. (2008). Update of WHO air quality guidelines. Air Quality, Atmosphere, and Health, 1, 7–13.CrossRefGoogle Scholar
  23. Lianou, M., Chalbot, M. C., Kotronarou, A., Kavouras, I. G., Karakatsani, A., Katsouyanni, K., Puustinnen, A., Hameri, K., Vallius, M., Pekkanen, J., Meddings, C., Harrison, R. M., Thomas, S., Ayres, J. G., Brink, H., Kos, G., Meliefste, K., de Hartog, J. J., & Hoek, G. (2007). Dependence of home outdoor particulate mass and number concentrations on residential and traffic features in urban areas. Journal of Air Waste Management Association, 57, 1507–1517.CrossRefGoogle Scholar
  24. Molina, M., & Molina, L. (2004). Megacities and atmospheric pollution. Air & Waste Management Association, 54, 644–680.Google Scholar
  25. Nogalski, M. (2010). Modellierung und Berechnung der Verkehrsemissionen in Santiago de Chile – Ist-Situation und Prognose für 2030. Diplomarbeit, Garmisch-Partenkirchen: Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung (IMK-IFU) am Karlsruher Institut für Technologie (KIT).Google Scholar
  26. Ostro, B. D., Sanchez, J. M., Aranda, C. & Eskeland, G. A. (1995). Air pollution and mortality. Results from Santiago, Chile (Policy Research Working Paper 1453). The World Bank, Development Research Group.Google Scholar
  27. Öttl, D., Sturm, P. J., Pretterhofer, G., Bacher, M., Rodler, J., & Almbauer, R. A. (2003). Lagrangian dispersion modeling of vehicular emissions from a highway in complex terrain. Journal of the Air and Waste Management Association, 53, 1233–1240.Google Scholar
  28. Penard-Morand, C., Schillinger, C., Armengaud, A., Debotte, G., Chretien, E., Pellier, S., & Maesano, I. (2006). Assessment of schoolchildren’s exposure to traffic-related air pollution in the French six cities study using a dispersion model. Atmospheric Environment, 40, 2274–2287.CrossRefGoogle Scholar
  29. PNUMA (2003). Perspectivas del Medio Ambiente Urbano: GEO Santiago. Equipo del Instituto de Estudio UrbanosGoogle Scholar
  30. Pope, C. A., Dockery, D. W., Spengler, J. D., & Raizenne, M. E. (1991). Respiratory health and Pm10 pollution – A daily time-series analysis. American Review of Respiratory Disease, 144(3), 668–674.CrossRefGoogle Scholar
  31. Pope, C. A., Schwartz, J., & Ransom, M. R. (1992). Daily mortality and PM10 pollution in Utah Valley. Archives of Environmental Health, 47(3), 211–217.CrossRefGoogle Scholar
  32. Pope, C. A., Thun, M. J., Namboodiri, M. M., Dockery, D. W., Evans, J., Speizer, F. E., & Heath, C. W. (1995). Particulate air-pollution as a predictor of mortality in a prospective-study of us adults. American Journal of Respiratory and Critical Care Medicine, 151(3), 669–674.Google Scholar
  33. Rappenglück, B., Schmitz, R., Bauerfeind, M., Cereceda-Balic, F., von Baer, D., Jorquera, H., Silva, Y., & Oyola, P. (2005). An urban photochemistry study in Santiago de Chile. Atmospheric Environment, 39(16), 2913–2931.CrossRefGoogle Scholar
  34. Rutllant, J., & Garreaud, R. (1995). Meteorological air pollution potential for Santiago, Chile: Towards an objective episode forecasting. Environmental Monitoring and Assessment, 34, 223–244.CrossRefGoogle Scholar
  35. Schmitz, R. (2005). Modelling of air pollution dispersion in Santiago de Chile. Atmospheric Environment, 39, 2035–2047.CrossRefGoogle Scholar
  36. Schmitz, R., Falvey, M., Clerc, J., Ozimiça, N., & Oporto, L. (2010). Optimización del Modelo Fotoquímico de alta resolución implementado en la fase 2007 y ampliación de su alcance a material particulado respirable y precursores, Final report, CONAMA.Google Scholar
  37. Schwartz, J. (2000). The distributed lag between air pollution and daily deaths. Epidemiology, 11(3), 320–326.CrossRefGoogle Scholar
  38. Schwartz, J. (2001). Is there harvesting in the association of airborne particles with daily deaths and hospital admissions? Epidemiology, 12(1), 55–61.CrossRefGoogle Scholar
  39. SECTRA (2001). Metodología para el cálculo de emisiones Vehiculares (MODEM).Google Scholar
  40. Suppan, P. (2010). Assessment of air pollution in the conurbation of Munich – Present and future. International Journal of Environment and Pollution, 40(1–3), 149–159.CrossRefGoogle Scholar
  41. Suppan, P., & Schädler, G. (2004). The impact of highway emissions on ozone and nitrogen oxide levels during specific meteorological conditions. Science of the Total Environment, Volumes 334–335, 215–222.CrossRefGoogle Scholar
  42. Tuch, T. M., Herbarth, O., Franck, U., Peters, A., Wehner, B., Wiedensohler, A., & Heintzenberg, J. (2006). Weak correlation of ultrafine aerosol particle concentrations <800 nm between two sites within one city. Journal of Exposure Science Environmental Epidemiology, 16, 486–490.CrossRefGoogle Scholar
  43. United Nations Environment Program/World Health Organization. (1992). Urban air pollution in megacities of the world. United Kingdom: Blackwell.Google Scholar
  44. Wehner, B., & Wiedensohler, A. (2003). Long term measurements of submicrometer urban aerosols: Statistical analysis for correlations with meteorological conditions and trace gases. Atmospheric Chemistry and Physics, 3, 867–879.CrossRefGoogle Scholar
  45. Wichmann, H. E., Spix, C., Tuch, T., Wolke, G., Peters, A., Heinrich, J., Kreyling, W. G., & Heyder, J. (2000). Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: Role of particle number and particle mass. Research Report Health Effects Institute, 98, 5–86.Google Scholar
  46. Wietlisbach, V., Pope, C. A., & Ackermann-Liebrich, U. (1996). Air pollution and daily mortality in three Swiss urban areas. Sozial-und Präventivmedizin, 41(2), 107–115.CrossRefGoogle Scholar
  47. World Health Organization. (2005a). WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide (AQGs). Bonn Office: WHO.Google Scholar
  48. World Health Organization. (2005b). Special programme on health and environment. European Centre for Environment and Health. Bonn Office: WHO.Google Scholar
  49. World Health Organization. (2006). WHO air quality guidelines – Global update 2005: Particulate matter, ozone, nitrogen dioxide and sulphur dioxide. Copenhagen: WHO regional office for Europe 2006.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter Suppan
    • 1
  • Ulrich Franck
    • 1
  • Rainer Schmitz
    • 1
  • Frank Baier
    • 1
  1. 1.Institute for Meteorology and Climate ResearchKarlsruhe Institute of Technology (KIT)Garmisch-PartenkirchenGermany

Personalised recommendations