Skip to main content

The Hartley Phase Spectrum as an Assistive Feature for Classification

  • Conference paper
Advances in Nonlinear Speech Processing (NOLISP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5933))

Included in the following conference series:

Abstract

The phase of a signal conveys critical information for feature extraction. In this work is shown that for certain speech and audio classes where their magnitude content underperforms in terms of recognition rate, the combination of magnitude with phase related features increases the classification rate compared to the case where only the magnitude content of the signal is used. However, signal phase extraction is not a straightforward process, mainly due to the discontinuities appearing in the phase spectrum. Hence, in the proposed method, the phase content of the signal is extracted via the Hartley Phase Spectrum where the sources of phase discontinuities are detected and overcome, resulting in a phase spectrum in which the number of discontinuities is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsteris, L.D., Paliwal, K.K.: Further intelligibility results from human listening tests using the short-time phase spectrum. Speech Communication 48, 727–736 (2006)

    Article  Google Scholar 

  2. McGowan, R., Kuc, R.: A direct relation between a signal time series and its unwrapped phase. IEEE Transactions on Acoustics, Speech, and Signal Processing 30(5), 719–726 (1982)

    Article  MATH  Google Scholar 

  3. Eck, D., Casagrande, N.: Finding meter in music using an autocorrelation phase matrix and Shannon entropy. In: Proc. of the 6th Int. Conference on Music Information Retrieval (ISMIR), UK, pp. 312–319 (2005)

    Google Scholar 

  4. Schlüter, R., Ney, H.: Using phase spectrum information for improved speech recognition performance. In: Proc. of the Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP), USA, vol. 1, pp. 133–136 (2001)

    Google Scholar 

  5. Alsteris, L.D., Paliwal, K.K.: Evaluation of the modified group delay feature for isolated word recognition. In: Proc. of the 8th International Symposium on Signal Processing and its Applications (ISSPA), Australia, pp. 715–718 (2005)

    Google Scholar 

  6. Paliwal, K.K., Alsteris, L.D.: On the usefulness of STFT phase spectrum in human listening tests. Speech Communication 45, 153–170 (2005)

    Article  Google Scholar 

  7. Bozkurt, B., Couvreur, L., Dutoit, T.: Chirp group delay analysis of speech signals. Speech Communication 49, 159–176 (2007)

    Article  Google Scholar 

  8. Furui, S.: Cepstral analysis technique for automatic speaker verification. IEEE Transactions on Acoustics, Speech, and Signal Processing 29(2), 254–272 (1981)

    Article  Google Scholar 

  9. Davis, S., Mermelstein, P.: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing 28(4), 357–366 (1980)

    Article  Google Scholar 

  10. TIMIT® Acoustic-Phonetic Continuous Speech Corpus (1993)

    Google Scholar 

  11. Audio Database: 505 Digital Sound Effects. (Disk 3/5: 101 Sounds of the Machines of War), Delta (1993)

    Google Scholar 

  12. Mahalanobis, P.C.: On the generalized distance in statistics. Proceedings of the National Institute of Science of India 12, 49–55 (1936)

    Google Scholar 

  13. Tribolet, J.: A new phase unwrapping algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing 25(2), 170–177 (1977)

    Article  MATH  Google Scholar 

  14. Al-Nashi, H.: Phase Unwrapping of Digital Signals. IEEE Transactions on Acoustics, Speech and Signal Processing 37(11), 1693–1702 (1989)

    Article  Google Scholar 

  15. Paraskevas, I., Rangoussi, M.: The Hartley Phase Cepstrum as a Tool for Signal Analysis. In: Chetouani, M., Hussain, A., Gas, B., Milgram, M., Zarader, J.-L. (eds.) NOLISP 2007. LNCS (LNAI), vol. 4885, pp. 204–212. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing Principles, Algorithms, and Applications, ch. 4, 5. Macmillan Publishing Company, Basingstoke (1992)

    Google Scholar 

  17. Bozkurt, B., Dutoit, T.: Mixed-phase speech modeling and formant estimation, using differential phase spectrums. In: Proc. Voice Quality: Functions, Analysis and Synthesis (VOQUAL), Switzerland, pp. 21–24 (2003)

    Google Scholar 

  18. Sitton, G.A., Burrus, C.S., Fox, J.W., Treitel, S.: Factoring very-high-degree polynomials. IEEE Signal Processing Magazine 6, 27–42 (2003)

    Article  Google Scholar 

  19. Bracewell, R.N.: The Fourier Transform and Its Applications, ch. 19. McGraw-Hill Book Company, New York (1986)

    Google Scholar 

  20. Chilton, E.: An 8kb/s speech coder based on the Hartley transform. In: Proc. Communication Systems: Towards Global Integration (ICCS), Singapore, vol. 1, pp. 13.5.1–13.5.5 (1990)

    Google Scholar 

  21. Paraskevas, I., Rangoussi, M.: The Hartley Phase Spectrum as a noise-robust feature in speech analysis. In: Proc. of the ISCA Tutorial and Research Workshop (ITRW) on Speech Analysis and Processing for Knowledge Discovery, Denmark (2008)

    Google Scholar 

  22. Paraskevas, I., Rangoussi, M.: The Hartley phase cepstrum as a tool for improved phase estimation. In: Proc. of the 16th Int. Conference on Systems, Signals and Image Processing (IWSSIP), Greece (2009)

    Google Scholar 

  23. Webb, A.R.: Statistical Pattern Recognition, 2nd edn., ch. 9. John Wiley & Sons, Ltd., Chichester (2002)

    MATH  Google Scholar 

  24. Paraskevas, I., Chilton, E., Rangoussi, M.: Audio Classification Using Features Derived from The Hartley Transform. In: Proc. of the 13th Int. Conference on Systems, Signals and Image Processing (IWSSIP), Hungary, pp. 309–312 (2006)

    Google Scholar 

  25. Gough, P.: A particular example of phase unwrapping using noisy experimental data. IEEE Transactions on Acoustics, Speech, and Signal Processing 31(3), 742–744 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paraskevas, I., Rangoussi, M. (2010). The Hartley Phase Spectrum as an Assistive Feature for Classification. In: Solé-Casals, J., Zaiats, V. (eds) Advances in Nonlinear Speech Processing. NOLISP 2009. Lecture Notes in Computer Science(), vol 5933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11509-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11509-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11508-0

  • Online ISBN: 978-3-642-11509-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics