Skip to main content

Transient Solution

  • Chapter
  • 1617 Accesses

Abstract

In this chapter, we apply the RG-factorizations to provide a unified algorithmic framework for dealing with transient solution in stochastic models. The transient solution includes the transient probability, the first passage time, the sojourn time and time-inhomogeneous Markov chains. Based on the first passage time, we extends the PH distribution and the MAP to the GPH distribution and the GMAP from finite phases to infinite phases, respectively, and also study the time-inhomogeneous PH (PH(t)) distribution and the time-inhomogeneous MAP (MAP(t)). Finally, we analyze some queueing examples such as GMAP/GPH/1 and MAP(t)/PH(t)/1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate J. and W. Whitt (1987). Transient behavior of the M/M/1 queue: starting at the origin. Queueing Systems 2: 41–65

    Article  MATH  Google Scholar 

  2. Abate J. and W. Whitt (1988). Transient behavior of the M/M/1 queue via Laplace transforms. Advances in Applied Probability 20: 145–178

    Article  MATH  MathSciNet  Google Scholar 

  3. Alfa A.S. and B.H. Margolius (2008). Two classes of time inhomogeneous Markov chains: analysis of the periodic case. Annals of Operations Research 160: 121–137

    Article  MATH  MathSciNet  Google Scholar 

  4. Asmussen S. and H. Thorisson (1987). A Markov chain approach to periodic queues. Journal of Applied Probability 24: 215–225

    Article  MATH  MathSciNet  Google Scholar 

  5. Baccelli F. and W.A. Massey (1989). A sample path analysis for the M/M/1 queue. Journal of Applied Probability 26: 418–422

    Article  MATH  MathSciNet  Google Scholar 

  6. Ball F. (1990). Aggregated Markov processes with negative exponential time interval omission. Advances in Applied Probability 22: 802–830

    Article  MATH  MathSciNet  Google Scholar 

  7. Ball F., R.K. Milne and G.F. Yeo (1991). Aggregated semi-Markov processes incorporating time interval omission. Advances in Applied Probability 20: 546–572

    Article  MathSciNet  Google Scholar 

  8. Ball F., R.K. Milne, I.D. Tame and G.F. Yeo (1997). Superposition of interacting aggregated continuous-time Markov chains. Advances in Applied Probability 29: 56–91

    Article  MATH  MathSciNet  Google Scholar 

  9. Ball F. and M. Sansom (1988). Aggregated Markov processes incorporating time interval omission. Advances in Applied Probability 23: 772–797

    Article  Google Scholar 

  10. Ball F. and G.F. Yeo (1993). Lumpability and Marginalisability for continuous-time Markov chains. Journal of Applied Probability 30: 518–528

    Article  MATH  MathSciNet  Google Scholar 

  11. Bambos N. and J. Walrand (1989). On queues with periodic input. Journal of Applied Probability 26: 381–389

    Article  MATH  MathSciNet  Google Scholar 

  12. Breuer L. (2001). The periodic BMAP/PH/c queue. Queueing Systems 38: 67–76

    Article  MATH  MathSciNet  Google Scholar 

  13. Champernowne D.G. (1956). An elementary method of solution of the queueing problem with a single server and constant parameters. Journal of the Royal Statistical Society (Series B) 18: 125–128

    MATH  MathSciNet  Google Scholar 

  14. Choudhury G., D. Lucantoni and W. Whitt (1997). Numerical solution of piece-stationary 1 M t G t /1 queues. Operations Research 45: 451–463

    Article  MATH  MathSciNet  Google Scholar 

  15. Clarke A.B. (1956). A waiting line process of Markov type. Annals of Mathematical Statistics 27: 452–459

    Article  MATH  MathSciNet  Google Scholar 

  16. Csenki A. (1992). The joint distribution of sojourn times in finite Markov processes. Advances in Applied Probability 24: 141–160

    Article  MATH  MathSciNet  Google Scholar 

  17. Dormuth D.W. and A.S. Alfa (1997). Two finite-difference methods for solving MAP(t)/PH(1)/1/K queueing models. Queueing Systems 27: 55–78

    Article  MATH  MathSciNet  Google Scholar 

  18. Fredkin D.R. and J.A. Rice (1986). On aggregated Markov processes. Journal of Applied Probability 23: 208–214

    Article  MATH  MathSciNet  Google Scholar 

  19. Grassmann W.K. (1977). Transient solutions in Markovian queues. European Journal of Operational Research 1: 396–402

    Article  MATH  MathSciNet  Google Scholar 

  20. Griffiths J.D., G.M. Leonenko and J.E. Williams (2006). The transient solution to M/E k /1 queue. Operations Research Letters 34: 349–354

    Article  MATH  MathSciNet  Google Scholar 

  21. Harrison J.M. and A.J. Lemoine (1977). Limit theorems for periodic queues. Journal of Applied Probability 14: 566–576

    Article  MATH  MathSciNet  Google Scholar 

  22. Hsu G.H. and Q.M. He (1991). The distribution of the first passage time for the Markov processes of GI/M/1 type. Stochastic Models 7: 397–417

    Article  MATH  MathSciNet  Google Scholar 

  23. Hsu G.H. and X. Yuan (1994). Transient solutions for denumerable-state Markov processes. Journal of Applied Probability 31: 635–645

    Article  MATH  MathSciNet  Google Scholar 

  24. Hsu G.H. and X. Yuan (1995). First passage times and their algorithms for Markov processes. Stochastic Models 11: 195–210

    Article  MATH  Google Scholar 

  25. Hsu G.H., X. Yuan and Q.L. Li (2000). First passage times for Markov renewal processes and application. Science in China (Series A) 43: 1238–1249

    Article  MATH  Google Scholar 

  26. Iordache O., I. Bucurescu and A. Pascu (1990). Lumpability in compartmental models. Journal of Mathematical Analysis and Applications 146: 306–317

    Article  MATH  MathSciNet  Google Scholar 

  27. Jalali A. and A.G. Hawkes (1992). Generalised eigenproblems arising in aggregated Markov processes allowing for time interval omission. Advances in Applied Probability 24: 302–321

    Article  MATH  MathSciNet  Google Scholar 

  28. Kemeny J.G. and J.L. Snell (1960). Finite Markov Chains, Princeton, N.J.D. Van Nostrand Co., Inc.

    MATH  Google Scholar 

  29. Larget B. (1998). A canonical representation for aggregated Markov processes. Journal of Applied Probability 35: 313–324

    Article  MATH  MathSciNet  Google Scholar 

  30. Lederman W. and G.E.H. Reuter (1954). Spectral theory for the differential equations of simple birth and death processes. Phil. Trans. R. Soc. London A 12: 321–369

    Article  Google Scholar 

  31. Lemoine A.J. (1989). Waiting time and workload in queues with periodic input. Journal of Applied Probability 26: 390–397

    Article  MATH  MathSciNet  Google Scholar 

  32. Lucantoni D.M., G.L. Choudhury and W. Whitt (1994). The transient BMAP/G/1 queue. Stochastic Models 10: 145–182

    Article  MATH  MathSciNet  Google Scholar 

  33. Margolius B.H. (1999). A sample path analysis of the M t /M t /c queue. Queueing Systems 31: 59–93

    Article  MATH  MathSciNet  Google Scholar 

  34. Margolius B.H. (2007). Transient and periodic solution to the time-inhomogeneous QBD process. Queueing Systems 56: 183–194

    Article  MATH  MathSciNet  Google Scholar 

  35. Margolius B.H. (2008). The matrices R and G of matrix analytic methods and the timeinhomogeneous periodic quasi-birth death process. Queueing Systems 60: 131–151

    Article  MATH  MathSciNet  Google Scholar 

  36. Massey W.A. (1985). Asymptotic analysis of the time dependent M/M/1 queue. Mathematics of Operations Research 10: 305–327

    Article  MATH  MathSciNet  Google Scholar 

  37. Massey W.A. and W. Whitt (1993). Networks of infinite-server queues with nonstationary Poisson input. Queueing Systems 13: 183–250

    Article  MATH  Google Scholar 

  38. Massey W.A. and W. Whitt (1994). Un stable asymptotics for nonstationary queues. Mathematics of Operations Research 19: 267–291

    Article  MATH  MathSciNet  Google Scholar 

  39. Neuts M.F. (1981). Matrix-Geometric Solutions in Stochastic Models—An Algorithmic Approach, The Johns Hopkins University Press: Baltimore.

    MATH  Google Scholar 

  40. Neuts M.F. (1989). Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker: New York

    MATH  Google Scholar 

  41. Ong K. and M. Taaffe (1988). Approximating nonstationary PH(t)/PH(t)/c queueing systems. Mathematics and Computers in Simulation 30: 441–452

    Article  MATH  MathSciNet  Google Scholar 

  42. Parthasarathy P.R. (1987). A transient solution to an M/M/1 queue: a new simple approach. Advances in Applied Probability 19: 997–998

    Article  MATH  MathSciNet  Google Scholar 

  43. Rolski T. (1987). Approximation of periodic queues. Advances in Applied Probability 19: 691–707

    Article  MATH  MathSciNet  Google Scholar 

  44. Rolski T. (1989). Relationships between characteristics in periodic Poisson queues. Queueing Systems 4: 17–26

    Article  MATH  MathSciNet  Google Scholar 

  45. Rubino G. and B. Sericola (1989). On weak lumpability in Markov chains. Journal of Applied Probability 26: 446–457

    Article  MATH  MathSciNet  Google Scholar 

  46. Rubino G. and B. Sericola (1989). Sojourn time in finite Markov processes. Journal of Applied Probability 27: 744–756

    Article  Google Scholar 

  47. Rubino G. and B. Sericola (1991). A finite characterization of weak lumpable Markov processes. I: the discrete time case. Stochastic Processes and their Applications 38: 195–204

    Article  MATH  MathSciNet  Google Scholar 

  48. Rydén T. (1996). On identifiability and order of continuous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions. Journal of Applied Probability 33: 640–653

    Article  MATH  MathSciNet  Google Scholar 

  49. Sericola B. (1990). Closed-form solution for the distribution of the total time spent in a subset of states of a homogeneous Markov processes during a finite observation period. Journal of Applied Probability 27: 713–719

    Article  MATH  MathSciNet  Google Scholar 

  50. Stadje W. (2005). The evolution of aggregated Markov chains. Statistics & Probability Letters 74: 303–311

    Article  MATH  MathSciNet  Google Scholar 

  51. Stewart G.W. (1983). Computable error bounds for aggregated Markov chains. Journal of the Association for Computing Machinery 30: 271–285

    MATH  MathSciNet  Google Scholar 

  52. Sumita U. and M. Rieders (1989). Lumpability and time reversibility and the aggregationdisaggregation method for large Markov chains. Stochastic Models 5: 63–81

    Article  MATH  Google Scholar 

  53. Taaffe M. and K. Ong (1987). Approximating nonstationary PH(t)/M(t)/s/c queueing systems. Annals of Operations Research 8: 103–116

    Article  Google Scholar 

  54. Whillie H. (1998). Periodic steady state of loss systems with periodic input. Advances in Applied Probability 30: 152–166

    Article  MathSciNet  Google Scholar 

  55. Zhang J. and E.J. Coyle (1996). The transient solution of time-dependent M/M/1 queues. IEEE Transactions on Information Theory 37: 1690–1696

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, QL. (2010). Transient Solution. In: Constructive Computation in Stochastic Models with Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11492-2_8

Download citation

Publish with us

Policies and ethics