Skip to main content

Non-equilibrium Dynamics of Quantum Systems: Order Parameter Evolution, Defect Generation, and Qubit Transfer

  • Chapter
  • First Online:
Quantum Quenching, Annealing and Computation

Part of the book series: Lecture Notes in Physics ((LNP,volume 802))

Abstract

The properties of systems near quantum critical points (QCPs) have been studied extensively in recent years [1, 2]. A QCP is a point across which the symmetry of the ground state of a quantum system changes in a fundamental way; such a point can be accessed by changing some parameter, say λ, in the Hamiltonian governing the system. The change in the ground state across a QCP is mediated by quantum fluctuations. Unlike conventional thermal critical points , thermal fluctuations do not play a crucial role in such transitions. Similar to its thermal counterparts, the low-energy physics near a QCP is associated with a number of critical exponents which characterize the universality class of such a transition. Among these exponents, the dynamical critical exponent z provides the signature of the relative scaling of space and time at the transition and has no counterpart in thermal phase transitions. The other exponent which is going to be important for the purpose of this review is the well-known correlation length exponent ν. These exponents are formally defined as follows. As we approach the critical point at \(\lambda = \lambda_c\), the correlation length diverges as \(\xi \sim |\lambda - \lambda_c|^{-\nu}\), while the gap between the ground state and first excited state vanishes as \(\varDelta E \sim \xi^{-z} \sim |\lambda - \lambda_c|^{z\nu}\). Exactly at the critical point \(\lambda = \lambda_c\), the energy of the low-lying excitations vanishes at some wave number k 0 as \({\boldsymbol \omega} \sim |{\textbf k} - {\textbf k}_0|^z\). The critical exponents are independent of the details of the microscopic Hamiltonian; they depend only on a few parameters such as the dimensionality of the system and the symmetry of the order parameter. These features render the low-energy equilibrium physics of a quantum system near a QCP truly universal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  2. S.K. Ma, Modern Theory of Critical Phenomena (Addison-Wesley, New York, 1996).

    Google Scholar 

  3. K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

    Article  ADS  Google Scholar 

  4. S. Sachdev and K. Damle, Phys. Rev. Lett. 78, 943 (1997).

    Article  ADS  Google Scholar 

  5. S.A. Hartnoll, P.K. Kovtun, M. Müller and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

    Article  ADS  Google Scholar 

  6. A. Del Maestro, B. Rosenow, N. Shah and S. Sachdev, Phys. Rev. B 77, 180501(R) (2008).

    Article  ADS  Google Scholar 

  7. K. Sengupta, S. Powell and S. Sachdev, Phys. Rev. A 69, 053616 (2004).

    Article  ADS  Google Scholar 

  8. R.A. Barankov and L.S. Levitov, Phys. Rev. Lett. 96, 230403 (2006).

    Article  ADS  Google Scholar 

  9. A.A. Burkov, M.D. Lukin and E. Demler, Phys. Rev. Lett. 98, 200404 (2007).

    Article  ADS  Google Scholar 

  10. R.W. Cherng, V. Gritsev, D.M. Stamper-Kurn and E. Demler, Phys. Rev. Lett. 100, 180404 (2008).

    Article  ADS  Google Scholar 

  11. E. Altman, A. Polkovnikov, E. Demler, B. Halperin and M.D. Lukin, Phys. Rev. Lett. 95, 020402 (2005).

    Article  ADS  Google Scholar 

  12. V. Gritsev, E. Demler, M. Lukin and A. Polkovnikov, Phys. Rev. Lett. 99, 200404 (2007).

    Article  ADS  Google Scholar 

  13. A. Das, K. Sengupta, D. Sen and B.K. Chakrabarti, Phys. Rev. B 74, 144423 (2006).

    Article  ADS  Google Scholar 

  14. M. Rigol, A. Muramatsu and M. Olshanii, Phys. Rev. A 74, 053616 (2006).

    Article  ADS  Google Scholar 

  15. M. Rigol, Phys. Rev. Lett. 103, 100403 (2009).

    Article  ADS  Google Scholar 

  16. I. Klich, C. Lannert and G. Refael, Phys. Rev. Lett. 99, 205303 (2007).

    Article  ADS  Google Scholar 

  17. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch and I. Bloch, Nature 415, 39 (2002).

    Article  ADS  Google Scholar 

  18. I. Bloch, Nat. Phys. 1, 23 (2005).

    Article  Google Scholar 

  19. T.W.B. Kibble, J. Phys. A 9, 1387 (1976).

    Article  ADS  MATH  Google Scholar 

  20. W.H. Zurek, Nature 317, 505 (1985).

    Article  ADS  Google Scholar 

  21. N.D. Antunes, L.M.A. Bettencourt and W.H. Zurek, Phys. Rev. Lett. 82, 2824 (1999).

    Article  ADS  Google Scholar 

  22. J. Dziarmaga, P. Laguna and W.H. Zurek, Phys. Rev. Lett. 82, 4749 (1999).

    Article  ADS  Google Scholar 

  23. J.R. Anglin and W.H. Zurek, Phys. Rev. Lett. 83, 1707 (1999).

    Article  ADS  Google Scholar 

  24. A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005).

    Article  ADS  Google Scholar 

  25. K. Sengupta, D. Sen and S. Mondal, Phys. Rev. Lett. 100, (2008) 077204.

    Article  ADS  Google Scholar 

  26. S. Mondal, D. Sen and K. Sengupta, Phys. Rev. B 78, (2008) 045101.

    Article  ADS  Google Scholar 

  27. D. Sen, K. Sengupta and S. Mondal, Phys. Rev. Lett. 101, (2008) 016806.

    Article  ADS  Google Scholar 

  28. S. Mondal, K. Sengupta and D. Sen, Phys. Rev. B 79, (2009) 045128.

    Article  ADS  Google Scholar 

  29. S. Bose, Phys. Rev. Lett. 91, 207901 (2003).

    Article  ADS  Google Scholar 

  30. M. Christandl, N. Datta, A. Ekert and A.J. Landahl, Phys. Rev. Lett. 92, 187902 (2004).

    Article  ADS  Google Scholar 

  31. C. Albanese, M. Christandl, N. Datta and A. Ekert, Phys. Rev. Lett. 93, 230502 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Christandl, N. Datta, T. Dorlas, A. Ekert, A. Kay and A. Landahl, Phys. Rev. A 71, 032312 (2005).

    Article  ADS  Google Scholar 

  33. A. Kay, Phys. Rev. Lett. 98, 010501 (2007).

    Article  ADS  Google Scholar 

  34. F. Galve, D. Zueco, S. Kohler, E. Lutz and P. Hänggi, Phys. Rev. A 79, 032332 (2009).

    Article  ADS  Google Scholar 

  35. S. Sachdev, K. Sengupta and S. M. Girvin, Phys. Rev. B 66, 075128 (2002).

    Article  ADS  Google Scholar 

  36. S. Dusuel and J. Vidal, Phys. Rev. Lett. 93, 237204 (2004).

    Article  ADS  Google Scholar 

  37. S. Dusuel and J. Vidal, Phys. Rev. B 71, 224420 (2005).

    Article  ADS  Google Scholar 

  38. J. Vidal, G. Palacios and J. Aslangul, Phys. Rev. A 70, 062304 (2004).

    Article  ADS  Google Scholar 

  39. B.K. Chakrabarti and J.-I. Inoue, Ind. J. Phys. 80, 609 (2006).

    Google Scholar 

  40. B.K. Chakrabarti, A. Das and J.-I. Inoue, Euro. Phys. J. B 51, 321 (2006).

    Article  ADS  Google Scholar 

  41. E. Fradkin, Field Theories of Condensed Matter Systems (Addison-Wesley, Reading, 1991).

    MATH  Google Scholar 

  42. B.K. Chakrabarti, A. Dutta and P. Sen, Quantum Ising Phases and Transitions in Transverse Ising Models (Springer, Heidelberg, 1996).

    MATH  Google Scholar 

  43. D. Gordon and C.M. Savage, Phys. Rev. A 59, 4623 (1999).

    Article  ADS  Google Scholar 

  44. A. Micheli, D. Jaksch, J.I. Cirac and P. Zoller, Phys. Rev. A 67, 013607 (2003).

    Article  ADS  Google Scholar 

  45. A.P. Hines, R.H. McKenzie and G.J. Milburn, Phys. Rev. A 67, 013609 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Simoni, F. Ferlaino, G. Roati, G. Modugno and M. Inguscio, Phys. Rev. Lett 90, 163202 (2003).

    Article  ADS  Google Scholar 

  47. J. Cirac, M. Lewenstein, K. Molmer and P. Zoller, Phys. Rev. A 57, 1208 (1998).

    Article  ADS  Google Scholar 

  48. B. Damski, Phys. Rev. Lett. 95, 035701 (2005).

    Article  ADS  Google Scholar 

  49. W.H. Zurek, U. Dorner and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005).

    Article  ADS  Google Scholar 

  50. A. Polkovnikov and V. Gritsev, Nat. Phys. 4, 477 (2008).

    Article  Google Scholar 

  51. J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).

    Article  ADS  Google Scholar 

  52. J. Dziarmaga, Phys. Rev. B 74, 064416 (2006).

    Article  ADS  Google Scholar 

  53. P. Calabrese and J. Cardy, J. Stat. Mech: Theory Expt P04010 (2005).

    Google Scholar 

  54. P. Calabrese and Phys. Rev. Lett. 96, 136801 (2006).

    Article  ADS  Google Scholar 

  55. R.W. Cherng and L. Levitov, Phys. Rev. A 73, 043614 (2006).

    Article  ADS  Google Scholar 

  56. V. Mukherjee, U. Divakaran, A. Dutta and D. Sen, Phys. Rev. B 76, 174303 (2007).

    Article  ADS  Google Scholar 

  57. B. Damski and W.H. Zurek, Phys. Rev. A 73 063405 (2006).

    Article  ADS  Google Scholar 

  58. T. Caneva, R. Fazio and G.E. Santoro, Phys. Rev. B 76, 144427 (2007).

    Article  ADS  Google Scholar 

  59. F.M. Cucchietti, B. Damski, J. Dziarmaga and W.H. Zurek, Phys. Rev. A 75, 023603 (2007).

    Article  ADS  Google Scholar 

  60. C. Kollath, A.M. Lauchli and E. Altman, Phys. Rev. Lett. 98, 180601 (2007).

    Article  ADS  Google Scholar 

  61. M. Eckstein and M. Kollar, Phys. Rev. Lett. 100, 120404 (2008).

    Article  ADS  Google Scholar 

  62. S.R. Manmana, S. Wessel, R.M. Noack and A. Muramatsu, Phys. Rev. Lett. 98, 210405 (2007).

    Article  ADS  Google Scholar 

  63. For a review, see I. Bloch, J. Dalibard and W.Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  64. L.-M. Duan, E. Demler and M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003).

    Article  ADS  Google Scholar 

  65. A. Micheli, G.K. Brennen and P. Zoller, Nature Physics 2, 341 (2006).

    Article  ADS  Google Scholar 

  66. L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalattore and D.M. Stamper-Kurn, Nature 443, 312 (2006).

    Article  ADS  Google Scholar 

  67. L. Landau and E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, Second Edition (Pergamon Press, Oxford, 1965).

    MATH  Google Scholar 

  68. C. Zener, Proc. Roy. Soc. London, Ser. A 137, 696 (1932).

    Article  ADS  Google Scholar 

  69. R. Barankov and A. Polkovnikov, Phys. Rev. Lett. 101, 076801 (2008).

    Article  ADS  Google Scholar 

  70. C. De Grandi, R.A. Barankov and A. Polkovnikov, Phys. Rev. Lett. 101, 230402 (2008).

    Article  Google Scholar 

  71. A. Kitaev, Ann. Phys. 321, 2 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. X.-Y. Feng, G.-M. Zhang and T. Xiang, Phys. Rev. Lett. 98, 087204 (2007).

    Article  ADS  Google Scholar 

  73. G. Baskaran, S. Mandal and R. Shankar, Phys. Rev. Lett. 98, 247201 (2007).

    Article  ADS  Google Scholar 

  74. D.-H. Lee, G.-M. Zhang and T. Xiang, Phys. Rev. Lett. 99, 196805 (2007).

    Article  ADS  Google Scholar 

  75. K.P. Schmidt, S. Dusuel and J. Vidal, Phys. Rev. Lett. 100, 057208 (2008).

    Article  ADS  Google Scholar 

  76. H.-D. Chen and Z. Nussinov, J. Phys. A 41, 075001 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  77. Z. Nussinov and G. Ortiz, Phys. Rev. B 77, 064302 (2008).

    Article  ADS  Google Scholar 

  78. A. Kitaev, Ann. Phys. 303, 2 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. F. Pellegrini, S. Montangero, G.E. Santoro and R. Fazio, Phys. Rev. B 77, 140404(R) (2008).

    Article  ADS  Google Scholar 

  80. U. Divakaran, A. Dutta and D. Sen, Phys. Rev. B 78, 144301 (2008).

    Article  ADS  Google Scholar 

  81. U. Divakaran, V. Mukherjee, A. Dutta and D. Sen, J. Stat. Mech. P02007 (2009).

    Google Scholar 

  82. S.E. Sebastian, P.A. Sharma, M. Jaime, N. Harrison, V. Correa, L. Balicas, N. Kawashima, C.D. Batista and I.R. Fisher, Phys. Rev. B 72, 100404(R) (2005).

    Article  ADS  Google Scholar 

  83. S.E. Sebastian, N. Harrison, C.D. Batista, L. Balicas, M. Jaime, P.A. Sharma, N. Kawashima and I.R. Fisher, Nature 441, 617 (2006).

    Article  ADS  Google Scholar 

  84. A. Bermudez, D. Patanè, L. Amico and M.A. Martin-Delgado, Phys. Rev. Lett. 102, 135702 (2009).

    Article  ADS  Google Scholar 

  85. A. Sen(De), U. Sen and M. Lewenstein, Phys. Rev. A 72, 052319 (2005).

    Article  ADS  Google Scholar 

  86. H. Wichterich and S. Bose, Phys. Rev. A 79, 060302(R) (2009).

    Article  ADS  Google Scholar 

  87. K. Sengupta and D. Sen, Phys. Rev. A 80, 032304 (2009).

    Article  ADS  Google Scholar 

  88. L. Cincio, J. Dziarmaga, M.M. Rams and W.H. Zurek, Phys. Rev. A 75, 052321 (2007).

    Article  ADS  Google Scholar 

  89. S. Deng, L. Viola and G. Ortiz, Proceedings of the 14th International Conference on Recent Progress in Many-Body Theories, Series on Advances in Many-Body Theory, vol. 11 (World Scientific, 2008), pp. 387–397.

    Google Scholar 

Download references

We thank Amit Dutta and Anatoli Polkovnikov for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Mondal , D. Sen or K. Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mondal, S., Sen, D., Sengupta, K. (2010). Non-equilibrium Dynamics of Quantum Systems: Order Parameter Evolution, Defect Generation, and Qubit Transfer. In: Chandra, A., Das, A., Chakrabarti, B. (eds) Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol 802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11470-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11470-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11469-4

  • Online ISBN: 978-3-642-11470-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics