Skip to main content

Roles of Quantum Fluctuation in Frustrated Systems – Order by Disorder and Reentrant Phase Transition

  • Chapter
  • First Online:
Quantum Quenching, Annealing and Computation

Part of the book series: Lecture Notes in Physics ((LNP,volume 802))

Abstract

Frustration in systems shows many interesting equilibrium and dynamical properties [1–6]. In frustrated classical systems, there is no ground state where all the interactions are satisfied energetically. Because the ground states in regularly frustrated classical systems have many energetically unsatisfied interactions, there are many degenerated ground states and the residual entropy is larger than that of unfrustrated systems. Figure 10.1 shows the ground states of three Ising spins on antiferromagnetic triangle cluster. The closed and open circles in Fig. 10.1 denote up and down spins, respectively. The crosses in Fig. 10.1 represent energetically unsatisfied interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Toulouse, Commun. Phys. 2, 115 (1977).

    Google Scholar 

  2. J. Vannimenus and G. Toulouse, J. Phys. C. 10, L537 (1977).

    Article  ADS  Google Scholar 

  3. R. Liebmann, Statistical Mechanics of Periodic Frustrated Ising Systems (Springer-Verlag GmbH & Co. KG, Berlin and Heidelberg 1986).

    Google Scholar 

  4. M.F. Collins and O.A. Petrenko, Can. J. Phys. 75, 605 (1997).

    Article  ADS  Google Scholar 

  5. H. Kawamura, J. Phys. Condens. Matter, 10, 4707 (1998).

    Article  ADS  Google Scholar 

  6. H.T. Diep (eds.), Frustrated Spin Systems (World Scientific Pub. Co. Inc., Singapore, 2005).

    Google Scholar 

  7. K. Husimi and I. Syozi, Prog. Theor. Phys. 5, 177 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  8. I. Syozi, Prog. Theor. Phys. 5, 341 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  9. G. H. Wannier, Phys. Rev. 79, 357 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. R.M.F. Houtappel, Physica. 5, 1009 (1964).

    Google Scholar 

  11. G.H. Wannier, Phys. Rev. B. 7, 5017 (1973).

    Article  ADS  Google Scholar 

  12. K. Kano and S. Naya, Prog. Theor. Phys. 10, 158 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Physique. 41, (1980) 1263.

    Article  MathSciNet  Google Scholar 

  14. C.L. Henley, J. Appl. Phys. 61, 3962 (1987).

    Article  ADS  Google Scholar 

  15. J.T. Chalker, P.C.W. Holdworth, and E.F. Shender, Phys. Rev. Lett. 68, 855 (1992).

    Article  ADS  Google Scholar 

  16. D.A. Huse and A.D. Rutenberg, Phys. Rev. B. 45, 7536 (1992).

    Article  ADS  Google Scholar 

  17. O. Nagai, S. Miyashita and T. Horiguchi, Phys. Rev. B. 47 202 (1993).

    Article  ADS  Google Scholar 

  18. J.N. Reimers and A.J. Berlinsky, Phys. Rev. B. 48, 9539 (1993).

    Article  ADS  Google Scholar 

  19. R. Moessner and J.T. Chalker, Phys. Rev. B. 58, 12049 (1998).

    Article  ADS  Google Scholar 

  20. R. Moessner, Can. J. Phys. 79, 1283 (2001).

    Article  ADS  Google Scholar 

  21. S. Tanaka and S. Miyashita, J. Phys. Condens. Matter. 19, 145256 (2007).

    Article  ADS  Google Scholar 

  22. S. Tanaka and S. Miyashita, J. Phys. Soc. Jpn. 76, 103001 (2007).

    Article  ADS  Google Scholar 

  23. A. Chubukov, Phys. Rev. Lett. 69, 832 (1992).

    Article  ADS  Google Scholar 

  24. R. Moessner and S. L. Sondhi, Phys. Rev. B. 63, 224401 (2001).

    Article  ADS  Google Scholar 

  25. N. Todoroki and S. Miyashita, J. Phys. Soc. Jpn. 74, 2957 (2005).

    Article  ADS  MATH  Google Scholar 

  26. Y. Matsuda, H. Nishimori, and H.G. Katzgraber, arXiv:0808.0365v2.

    Google Scholar 

  27. J. Villain, J. Phys. C. 10, 1717 (1977).

    Article  ADS  Google Scholar 

  28. G. Forgacs, Phys. Rev. B. 22, 4473 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  29. R. Moessner, S.L. Sondhi, and P. Chandra, Phys. Rev. Lett. 84, 4457 (2000).

    Article  ADS  Google Scholar 

  30. R. Moessner and S.L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).

    Article  ADS  Google Scholar 

  31. R. Moessner and S.L. Sondhi, Phys. Rev. B. 68, 054405 (2003).

    Article  ADS  Google Scholar 

  32. D. S. Rokhsar and S.A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

    Article  ADS  Google Scholar 

  33. L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon Press, London, 1959).

    Google Scholar 

  34. V. G. Vaks, A.I. Larkin, and Yu.N. Obchinnikov, JETP. 49, 1180 (1965).

    Google Scholar 

  35. H. Nakano, Prog. Theor. Phys. 39, 1121 (1968).

    Article  ADS  Google Scholar 

  36. I. Syozi, Prog. Theor. Phys. 39, 1367 (1968).

    Article  ADS  Google Scholar 

  37. S. Miyazima and I. Syozi, Prog. Theor. Phys. 40, 185 (1968).

    Article  ADS  Google Scholar 

  38. S. Miyazima, Prog. Theor. Phys. 40, 462 (1968).

    Article  ADS  Google Scholar 

  39. I. Syozi, Phase Transition and Critical Phenomena 1, Domb and Green (eds.), (Academic Press, New York, 1972).

    Google Scholar 

  40. E.H. Fradkin and T.P. Eggarter, Phys. Rev. A. 14, 495 (1976).

    Article  ADS  Google Scholar 

  41. S. Miyashita, Prog. Theor. Phys. 69, 714 (1983).

    Article  ADS  Google Scholar 

  42. H. Kitatani, S. Miyashita and M. Suzuki, Phys. Lett. A. 108, 45 (1985).

    Article  ADS  Google Scholar 

  43. H. Kitatani, S. Miyashita and M. Suzuki, J. Phys. Soc. Jpn. 55, 865 (1986).

    Article  ADS  Google Scholar 

  44. P. Azaria, H.T. Diep and H. Giacomini, Phys. Rev. Lett. 59, 1629 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  45. T. Yokota, Phys. Rev. B. 39, 523 (1989).

    Article  ADS  Google Scholar 

  46. P. Azaria, H.T. Diep and H. Giacomini, Europhys. Lett. 9, 755 (1989).

    Article  ADS  Google Scholar 

  47. P. Azaria, H.T. Diep and H. Giacomini, Phys. Rev. B, 39, 740 (1989).

    Article  ADS  Google Scholar 

  48. H. Asakawa and M. Suzuki, Physica A. 229, 552 (1996).

    Article  ADS  Google Scholar 

  49. S. Miyashita and E. Vincent, Eur. Phys. J. B. 22, 203 (2001).

    Article  ADS  Google Scholar 

  50. S. Tanaka and S. Miyashita, Prog. Theor. Phys. Suppl. 157, 34 (2005).

    Article  ADS  Google Scholar 

  51. S. Miyashita, S. Tanaka and M. Hirano, J. Phys. Soc. Jpn. 76, 083001 (2007).

    Article  ADS  Google Scholar 

  52. W. Känzig. Ferroelectrics and Antiferroelectrics (Academic Press, New York, 1957).

    Google Scholar 

  53. J. Burfoot. Ferroelectrics (Van Nostrand, London, 1965).

    Google Scholar 

  54. S. Tanaka and S. Miyashita, J. Phys. Soc. Jpn. 78 (8), 084002 (2009), arXiv:0711.3261.

    Article  ADS  Google Scholar 

  55. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Science. 220, 671 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. S. Kirkpatrick, J. Stat. Phys. 34, (1984) 975.

    Article  MathSciNet  ADS  Google Scholar 

  57. K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).

    Article  ADS  Google Scholar 

  58. M.C. Tesi, E.J. Janse van Rensburg, E. Orlandini and S.G. Whittington, J. Statist. Phys. 82, (1996) 155.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. K. Hukushima, Phys. Rev. E. 60, 3606 (1999).

    Article  ADS  Google Scholar 

  60. R. Yamamoto and W. Kob, Phys. Rev. E. 61, 5473 (2000).

    Article  ADS  Google Scholar 

  61. S. Miyashita, S. Tanaka, H. de Raedt and B. Barbara, J. Phys. Conf. Ser. 143, 012005 (2009).

    Article  ADS  Google Scholar 

  62. B. Apolloni, C. Carvalho and D. de Falco, Stoc. Proc. Appl. 33, 233 (1989).

    Article  MATH  Google Scholar 

  63. A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson and J.D. Doll, Chem. Phys. Lett. 219, (1994) 343.

    Article  ADS  Google Scholar 

  64. T. Kadowaki and H. Nishimori, Phys. Rev. E. 58 5355 (1998).

    Article  ADS  Google Scholar 

  65. J. Brooke, D. Bitko, T. F. Rosenbaum and G. Aeppli, Science. 284, 779 (1999).

    Article  ADS  Google Scholar 

  66. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren and D. Preda, Science. 292, 472 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. G.E. Santoro, R. Martoňák, E. Tosatti and R. Car, Science. 295, 2427 (2002).

    Article  ADS  Google Scholar 

  68. A. Das and B.K. Chakrabarti, Quantum Annealing and Related Optimization Methods, Lect. Notes Phys. (Springer-Verlag, Berlin Heidelberg, 2005).

    Google Scholar 

  69. G.E. Santoro and E. Tosatti, J. Phys. A. 39, R393 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. A. Das and B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. S. Tanaka and S. Miyashita, J. Magn. Magn. Mater. 310, e468 (2007).

    Article  ADS  Google Scholar 

  72. K. Kurihara, S. Tanaka and S. Miyashita, Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. (2009). arXiv:0905.3424.

    Google Scholar 

  73. I. Sato, K. Kurihara, S. Tanaka, H. Nakagawa and S. Miyashita, Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. (2009). arXiv:0905.3425.

    Google Scholar 

  74. R. H. Swendsen and J. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  ADS  Google Scholar 

  75. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

    Article  ADS  Google Scholar 

  76. S. Miyashita, J. Phys. Soc. Jpn. 63, 2449 (1994).

    Article  ADS  Google Scholar 

  77. O. Koseki and F. Matsubara, J. Phys. Soc. Jpn. 66, 322 (1997).

    Article  ADS  Google Scholar 

  78. T. Nakamura, Phys. Rev. Lett. 101, 210602 (2008).

    Article  ADS  Google Scholar 

  79. S. Morita, S. Suzuki and T. Nakamura, Phys. Rev. E. 79, 065701 (2009).

    Article  ADS  Google Scholar 

  80. K. Tanaka and T. Horiguchi, Electron. Commun. Jpn. 83, 2117 (2000).

    Google Scholar 

  81. K. Tanaka and T. Horiguchi, Interdiscipl. Inform. Sci. 8, 33 (2002).

    MathSciNet  MATH  Google Scholar 

  82. D. Jaksch, C. Bruder, J.I. Cirac, C. W. Gardiner and P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

    Article  ADS  Google Scholar 

  83. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch and I. Bloch, Nature, 415, 39 (2001).

    Article  ADS  Google Scholar 

  84. M. Greiner, O. Mandel, T. Rom, A. Altmeyer, A. Widera, T. W. Hänsch and I. Bloch, Physica B Condensed Matter 329–333, 11 (2003).

    Article  Google Scholar 

  85. I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  86. J. Stephenson, J. Math. Phys. 11, 413 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  87. S. Fujiki, K. Shutoh, Y. Abe and S. Katsura, J. Phys. Soc. Jpn. 52, 1531 (1983).

    Article  ADS  Google Scholar 

  88. H. Takayama, K. matsumoto, H. Kawahara and K. Wada, J. Phys. Soc. Jpn. 52, 2888 (1993).

    Article  ADS  Google Scholar 

  89. L. P. Landau, Phys. Rev. B. 27, 5604 (1983).

    Article  ADS  Google Scholar 

  90. S. Miyashita, H. Kitatani and Y. Kanada, J. Phys. Soc. Jpn. 60, 523 (1991).

    Article  Google Scholar 

  91. O. Nagai, M. Kang and S. Miyashita, Phys. Lett. A. 196, 101 (1994).

    Article  ADS  Google Scholar 

  92. H.F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  93. M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).

    Article  ADS  MATH  Google Scholar 

  94. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgement

We thank Hans de Raedt, Bernard Barbara, Eric Vincent, Hiroshi Nakagawa, Kenichi Kurihara, Hosho Katsura, Issei Sato, and Yoshiki Matsuda for fruitful discussions. This work was partially supported by Research on Priority Areas “Physics of new quantum phases in superclean materials” (Grant No. 17071011) from MEXT, and also by the Next Generation Super Computer Project, Nanoscience Program from MEXT, The authors also thank the Supercomputer Center, Institute for Solid State Physics, University of Tokyo for the use of the facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Tanaka , M. Hirano or S. Miyashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanaka, S., Hirano, M., Miyashita, S. (2010). Roles of Quantum Fluctuation in Frustrated Systems – Order by Disorder and Reentrant Phase Transition. In: Chandra, A., Das, A., Chakrabarti, B. (eds) Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol 802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11470-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11470-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11469-4

  • Online ISBN: 978-3-642-11470-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics