Non-β-Lactam Antibiotics

Chapter
Part of the The Mycota book series (MYCOTA, volume 10)

Abstract

Some of the most important clinically useful antifungal and antibacterial drugs as well as the most important class of agrochemical fungicides are derived from fungal secondary metabolites. Several new options are now available for treating serious fungal and bacterial infections, such as echinocandins and retapamulin. This review focuses on currently known and recently developed antifungal and antibacterial agents from fungal origin. In addition, emerging therapeutic options are discussed.

References

  1. Abbas HK, Duke SO, Merrill AH, Wang E, Shier WT (1998) Phytotoxicity of australifungin, AAL-toxins and fumonisin B1 to Lemna pausicostata. Phytochemistry 47:1509–1514CrossRefGoogle Scholar
  2. Achenbach H, Mühlenfeld A, Fauth U, Zähner H (1985) Galbonolids A and B - two new non-glycosidic antifungal macrolides. From Streptomyces galbus. Tetrahedron Lett 26: 6167–6170CrossRefGoogle Scholar
  3. Aeed PA, Young CL, Nagiec MM, Elhammer AP (2009) Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A. Antimicrob Agents Chemother 53:496–504CrossRefGoogle Scholar
  4. Anand M, Chakraburtty K, Marton MJ, Hinnebusch AG, Kinzy TG (2003) Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3. J Biol Chem 278:6985–6991CrossRefGoogle Scholar
  5. Anand M, Balar B, Ulloque R, Gross SR, Kinzy TG (2006) Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A. J Biol Chem 281:32318–32326CrossRefGoogle Scholar
  6. Andersen CBF, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen JS, Spahn CMT, Kinzy TG, Andersen GR, Beckmann R. (2006) Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature 443:663–668CrossRefGoogle Scholar
  7. Anderson JB (2005) Evolution of antifungal drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol 3:547–556CrossRefGoogle Scholar
  8. Anke T, Steglich W (1999) Strobilurins and oudemansins. In: Grabley S, Thiericke R (eds) Drug discovery from nature, Springer, Berlin Heidelberg New York, pp 320–334Google Scholar
  9. Anke T, Oberwinkler F, Steglich W, Schramm G (1977) The strobilurins - new antifungal antibiotics from the basidiomycete Strobilurus tenacellus (Pers. ex Fr.) Sing. J Antibiot 30:806–810CrossRefGoogle Scholar
  10. Anke T, Hecht HJ, Schramm G, Steglich W (1979) Antibiotics from basidiomycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel (Agaricales). J Antibiot 32:1112–1117CrossRefGoogle Scholar
  11. Anke T, Besl H, Mocek U, Steglich W (1983) Antibiotics from basidiomycetes. XVIII. Strobilurin C and oudemansin B, two new antifungal metabolites from Xerula species (Agaricales). J Antibiot 36:661–666CrossRefGoogle Scholar
  12. Anke T, Werle A, Bross M, Steglich W (1990) Antibiotics from basidiomycetes. XXXIII. Oudemansin X, a new antifungal E-β-methoxyacrylate from Oudemansiella radicata (Relhan ex Fr.) Sing. J Antibiot 43:1010–1011CrossRefGoogle Scholar
  13. Aoki K, Uchiyama R, Yamauchi S, Katayama T, Itonori S, Sugita M, Hada N, Yamada-Hada J, Takeda T, Kumagai H, Yamamoto K (2004) Newly discovered neutral glycosphingolipids in aureobasidin A-resitant Zygomycetes. J Biol Chem 279:32028–32034CrossRefGoogle Scholar
  14. Aoki M, Kohchi M, Masubuchi K, Mizuguchi E, Murata T, Ohkuma H, Okada T et al. (2000) Aerothricin analogs, their preparation and use. Patent WO 00/05251Google Scholar
  15. Aoyagi A, Yano T, Kozuma S, Takatsu (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors from Phoma sp. SANK 13899. II. Structural elucidation. J Antibiot 60:143–152CrossRefGoogle Scholar
  16. Augustiniak H, Forche E, Reichenbach H, Wray V, Graefe U, Hoefle G (1991) Isolation and structure elucidation of ergokonin A and B; two new antifungal sterol antibiotics from Trichoderma koningii. Liebigs Ann Chem 4:361–366CrossRefGoogle Scholar
  17. Aviles P, Pateman A, San Roman R, Guillen MJ, de las Heras FG, Gargallo-Viola D (2001) Animal pharmacokinetics and interspecies scaling of sordarin derivatives following intravenous administration. Antimicrob Agents Chemother 45:2787–2792CrossRefGoogle Scholar
  18. Baker DD, Chu M, Oza U, Rajgarhia V (2007) The value of natural products to future pharmaceutical discovery. Nat Prod Rep 24:1225–1244CrossRefGoogle Scholar
  19. Balani SK, Xu X, Arison BH, Silva MV, Gries A, DeLuna FA, Cui D, Kari PH, Ly T, Hop CECA, Singh R, Wallace MA, Dean DC, Lin JH, Pearson PG, Baillie TA (2000) Metabolites of caspofungin acetate, a potent antifungal agent, in human plasma and urine. Drug Metab Dispos 28:1274–1278Google Scholar
  20. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58:649–662CrossRefGoogle Scholar
  21. Basilio A, Justice M, Harris G, Bills G, Collado J, de la Cruz M, Diez MT, Hernandez P, Liberator P, Nielsen Kahn J, Pelaez F, Platas G, Schmatz D, Shastry M, Tormo JR, Andersen GR, Vicente F (2006) The discovery of moriniafungin, a novel sordarin derivative produced by Morinia pestalozzioides. Bioorg Med Chem 14:560–566CrossRefGoogle Scholar
  22. Bastidas RJ, Reedy JL, Morales-Johansson H, Heitman J, Cardenas ME (2008) Signaling cascades as drug targets in model and pathogenic fungi. Curr Opin Investig Drugs 9:856–864Google Scholar
  23. Bäuerle J, Anke T (1980) Antibiotics from the genus Mycena and Hydropus scabripes. Planta Med 39:195–196Google Scholar
  24. Becker WF, von Jagow G, Anke T, Steglich W (1981) Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of the bc1 segment of the respiratory chain with an E-β-methoxyacrylate system as common structural element. FEBS Lett 132:329–333CrossRefGoogle Scholar
  25. Berova N, Breinholt J, Jensen GW, Kjær A, Lo L-C, Nakanishi K, Nielsen RI, Olsen CE, Pedersen C Stidsen CE (1994) Malonofungin: an antifungal aminomalonic acid from Phaeoramularia fusimaculans. Acta Chem Scand 48:240–251CrossRefGoogle Scholar
  26. Blunt JW, Copp BR, Hu W-P, Munro MHG, Nothcote PT, Pronsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244CrossRefGoogle Scholar
  27. Brandl E, Knauseder F, Schmid E, Thym H (1968) Water-soluble antibiotics. Austrian patent 261 804; Chem Abstr 69:76 054 rGoogle Scholar
  28. Brooks G, Burgess W, Colthurst D, Hinks JD, Hunt E, Pearson MJ, Shea B, Takle AK, Wilson JM, Woodnutt G (2001) Pleuromutilins. Part 1: the identification of novel mutilin 14-carbamates. Bioorg Med Chem 9:1221–1231CrossRefGoogle Scholar
  29. Buchanan MS, Steglich W, Anke T (1999) Strobilurin N and two metabolites of chorismic acid from the fruit-bodies of Mycena crocata (Agaricales). Z Naturforsch 54c:463–468Google Scholar
  30. Bueno JM, Chicharro JM, de las Heras GF, Huss S (2002) Antifungal sordarins. Part 4: synthesis and structure-activity relationships of 3′,4′-fused alkyl-tetrahydrofuran derivatives. Bioorg Med Chem Lett 12:1697–1700CrossRefGoogle Scholar
  31. Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153CrossRefGoogle Scholar
  32. Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25:475–516CrossRefGoogle Scholar
  33. Cabello MA, Platas G, Collado J, Díez, MT, Martín I, Vicente F, Meinz M, Onishi JC, Douglas C, Thompson J, Kurtz MB, Schwartz, RE, Bills GF, Giacobbe RA, Abruzzo GK, Flattery AM, Kong L, Peláez F (2001) Arundifungin, a novel antifungal compound produced by fungi: biological activity and taxonomy of the producing organisms. Int Microbiol 4:93–102Google Scholar
  34. Cai X, Gray PJ, Von Hoff DD (2009) DNA minor groove binders: back in the groove. Cancer Treat Rev 35:437-450. doi:10.1016/j.ctrv.2009.02.004CrossRefGoogle Scholar
  35. Capa L, Mendoza A, Lavandera JL, Gomez de las Heras F, Garcia-Bustos JF (1998) Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrob Agents Chemother 42:2694–2699Google Scholar
  36. Cappelletty DM, Jung R (2009) Anidulafungin and its role in candida infections. Infect Drug Resist 2:51–60CrossRefGoogle Scholar
  37. Champney WS, Rodgers WK (2007) Retapamulin inhibition of translation and 50S ribosomal subunit formation in Staphylococcus aureus cells. Antimicrob Agents Chemother 51:3385–3387CrossRefGoogle Scholar
  38. Chandrasekar PH, Sobel JD (2006) Micafungin: a new echinocandin. Clin Infect Dis 42:1171–1178CrossRefGoogle Scholar
  39. Clemons KV, Stevens DA (2000) Efficacies of sordarin derivatives GN193663, GM211676 and GM237354 in a murine model of systemic coccidioidomycosis. Antimicrob Agents Chemother 44:1875–1877Google Scholar
  40. Collignon P, Turnidge J (1999) Fusidic acid in vitro activity. Int J Antimicrob Agents 12:S45-S58CrossRefGoogle Scholar
  41. Coval SJ, Puar MS, Phife DW, Teraciano JS, Patel M (1995) SCH57404 an antifungal agent possessing the rare sordaricin skeleton and a tricyclic sugar moiety. J Antibiot 48:1171–1172CrossRefGoogle Scholar
  42. Cowart LA, Obeid LM (2007) Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 1771:421–431CrossRefGoogle Scholar
  43. Cowen LE (2008) The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6:187–198CrossRefGoogle Scholar
  44. Cowen LE, Steinbach WJ (2008) Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot Cell 7:747–764CrossRefGoogle Scholar
  45. Cowen LE, Singh SD, Köhler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, Lindquist S (2009) Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci USA 106:2818–2823CrossRefGoogle Scholar
  46. Craveri R, Manachini PL, Aragozzini V (1972) Thermozymocidin, new antifungal antibiotic from a thermophilic eumycete. Experientia 28:867–868CrossRefGoogle Scholar
  47. Cruz MC, Del Poeta M, Wang P, Wenger R, Zenke G, Quesniaux VF, Movva NR, Perfect JR, Cardenas ME, Heitman J (2000) Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrob Agents Chemother 44:143–149CrossRefGoogle Scholar
  48. Daferner M, Anke T, Hellwig V, Steglich W, Sterner O (1998) Strobilurin M, Tetrachloropyrocatechol and tetrachloropyrocatechol methyl ether: new antibiotics from a Mycena species. J Antibiot 51:816–822CrossRefGoogle Scholar
  49. Daferner M, Mensch S, Anke T, Sterner O (1999) Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z Naturforsch 54c:474–480Google Scholar
  50. Daum RS, Kar S, Kirkpatrick P (2007) Retapamulin. Nat Rev Drug Discov 6:865–866CrossRefGoogle Scholar
  51. Davidovich C, Bashan A, Auerbach-Nevo T-A, Yaggie RD, Gontarek RR, Ada Yonath A (2007) Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc Natl Acad Sci USA 104:4291–4296CrossRefGoogle Scholar
  52. Davidovich C, Bashan A, Yonath A (2008) Structural basis for cross-resistance to ribosomal PTC antibiotics. Proc Natl Acad Sci USA 105:20665–20670CrossRefGoogle Scholar
  53. De Carli L, Larizza L (1988) Griseofulvin. Mutat Res 195:91–126CrossRefGoogle Scholar
  54. Debono M, Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 48:471–497CrossRefGoogle Scholar
  55. Delgado A, Casas J, Llebaria A, Abad J, Fabrias G (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim Biophys Acta 1758:1957–1977CrossRefGoogle Scholar
  56. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:142–151CrossRefGoogle Scholar
  57. Denny PW, Goulding D, Ferguson MA, Smith DF (2004) Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity. Mol Microbiol 52:313–327CrossRefGoogle Scholar
  58. Denny PW, Shams-Eldin H, Price HP, Smith HF, Schwarz RT (2006) The protozoan inositol phosphorylceramide synthase: a novel drug target that defines a new class of sphingolipid synthase. J Biol Chem 281:28200–28209CrossRefGoogle Scholar
  59. Deresinski SC, Stevens DA (2003) Caspofungin. Clin Infect Dis 36:1445–1457CrossRefGoogle Scholar
  60. Desai K, Sullards MC, Allegood J, Wang E, Schmelz EM, Hartl M, Humpf H-U, Liotta DC, Peng Q, Merill AH (2002) Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim Biophys Acta 1585:188–192CrossRefGoogle Scholar
  61. Dickson RC (2008) New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 49:909–921CrossRefGoogle Scholar
  62. Dixon N, Shin L, Geerlings TH, Micklefield J. (2007) Celluar targets of natural products. Nat Prod Rep 24:1288–1310CrossRefGoogle Scholar
  63. Dodds Ashley ES, Lewis R, Lewis JS, Martin C, Andes D (2006) Pharmacology of systemic antifungal agents. Clin Infect Dis 43:S28-S39CrossRefGoogle Scholar
  64. Domínguez JM, Martín JJ (2004) Sordarins: inhibitors of fungal elongation factor-2. In: An Z (ed) Handbook of industrial mycology. Dekker, New York, pp 335–353Google Scholar
  65. Du L, Zhu X, Gerber R, Huffman J, Lou L, Jorgenson J, Yu F, Zaleta-Rivera K, Wang Q (2008) Biosynthesis of sphinganine-analog mycotoxins. J Ind Biotechnol 35:455–464CrossRefGoogle Scholar
  66. Egger H, Reinhagen H (1976a) New pleuromutilin derivatives with enhanced antimicrobial activity. I. Synthesis. J Antibiot 29:915–922CrossRefGoogle Scholar
  67. Egger H, Reinhagen H (1976b) New pleuromutilin derivatives with enhanced antimicrobial activity. II. Structure-activity correlations. J Antibiot 29:923–927CrossRefGoogle Scholar
  68. Engler M, Anke T, Klostermeyer D, Steglich W (1995) Hydroxystrobilurin A, a new antifungal E-β-methoxyacrylate from a Pterula species. J Antibiot 48:884–885CrossRefGoogle Scholar
  69. Engler M, Anke T, Sterner O (1998) Production of antibiotics by Collybia nivalis, Omphalotus olearius, a Favolaschia and a Pterula species on natural substrates. Z Naturforsch 53c:318–324Google Scholar
  70. Enoch DA, Ludlam HA, Brown NM (2006) Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55:809–818CrossRefGoogle Scholar
  71. Fernáandez-Ortuño D, Torés JA, de Vicente A, Pérez-García A (2008) Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. Int Microbiol 11:1–9Google Scholar
  72. Figueiredo JM, Dias WB, Mendonoca-Previato L, Previato JO, Heise N (2005) Characterization of the inositolphosphorylceramide synthase activity from Trypanosoma cruzi. Biochem J 387:519–529CrossRefGoogle Scholar
  73. Fostel JM, Lartey PA (2000) Emerging novel antifungal agents. Drug Discov Today 5:25–32CrossRefGoogle Scholar
  74. Fredenhagen A, Kuhn A, Peter HH, Cuomo V, Giulano U (1990a) Strobilurins F, G and H, three new antifungal metabolites from Bolinea lutea: I. Fermentation, isolation and biological activity - strobilurin-F, -G and -H, cytostatic antibiotics with fungicide activity. J Antibiot 43:655–660CrossRefGoogle Scholar
  75. Fredenhagen A, Hug P, and Peter HH (1990b) Strobilurins F, G and H, three new antifungal metabolites from Bolinea lutea: II. Structure determination - fungicide strobilurin-F, -G and -H production. J Antibiot 43:661–667CrossRefGoogle Scholar
  76. Fujie A (2007) Discovery of micafungin (FK463): a novel antifungal drug derived from a natural product lead. Pure Appl Chem 79:603–614CrossRefGoogle Scholar
  77. Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, Toyama R, Chiba K, Hoshino Y, Okumoto T (1993) Fungal metabolites. Part II. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J Antibiot 47:208–215CrossRefGoogle Scholar
  78. Fujita T, Hirose R, Yoneta M, Sasaki S, Inoue K, Kiuchi M, Hirase S, Chiba K, Sakamoto H, Arita H (1996) Potent immunosuppressants, 2-alkyl-2-aminopropane-1,3-diols. J Med Chem 39:4451–4459CrossRefGoogle Scholar
  79. Gelineau-van Waes, J, Starr L, Maddox J, Aleman F, Voss KA, Wilberding J, Riley RT (2005) Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defects Res A Clin Mol Teratol 73:487–497CrossRefGoogle Scholar
  80. Georgopapadakou NH, Tkacz JS (1995) The fungal cell wall as a drug target. Trends Microbiol 2:98–104CrossRefGoogle Scholar
  81. Godtfredsen WO, Jahnsen S, Lorck H et al. (1962): Fusidic acid. A new antibiotic. Nature 193:987CrossRefGoogle Scholar
  82. Godfredsen WO, von Daehne W, Vangedal S, Arigoni D, et al (1965) The stereochemistry of fusidic acid. Tetrahedron 21:3505–3530Google Scholar
  83. Gomez-Lorenzo MG, García-Bustos JF (1998) Ribosomal P-protein stalk function is targeted by sordarin. J Biol Chem 273:25041–25044CrossRefGoogle Scholar
  84. Gorman JA, Chang L-P, Clark J, Gustavson DR, Lam KS, Mamber SW, Pirnik D, Ricca C, Fernandes PB, O’Sullivan J (1996) Ascosteroside, a new antifungal agent from Ascotrichia amphitrichia. I. Taxonomy, fermentation and biological activities. J Antibiot 49:547–552CrossRefGoogle Scholar
  85. Graybill JR, Najvar L, Fothergill A, Bocanegra R, de las Heras FG (1999) Activities of sordarins in murine histoplasmosis. Antimicrob Agents Chemother 43:1716–1718Google Scholar
  86. Greenlee ML, Meng D, Mamai A, Fan W, Balcovec JM, Peel M, Li K (2007) Antifungal agents. Patent WO2007/126900 A2Google Scholar
  87. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526CrossRefGoogle Scholar
  88. Haller B, Loeffler W (1969) Stoffwechselprodukte von Mikroorganismen. 71. Mitteilung. Fusidinsäure aus Dermatophyten und anderen Pilzen. Arch Mikrobiol 65:181–194CrossRefGoogle Scholar
  89. Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632:16–30CrossRefGoogle Scholar
  90. Hanadate T, Tomishima M, Shiraishi N, Tanabe D, Morikawa H, Barrett D, Matsumoto S, Ohtomo K, Maki K (2009) FR290581, a novel sordarin derivative: synthesis and antifungal activity. Bioorg Med Lett 19:1465–1468CrossRefGoogle Scholar
  91. Hanessian S (2006) Structure-based organic synthesis of drug prototypes: a personal odyssey. ChemMedChem 1:1300–1330CrossRefGoogle Scholar
  92. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150CrossRefGoogle Scholar
  93. Harris GH, Shafiee A, Cabello MA, Curotto JE, Genilloud O, Göklen KE, Kurtz MB, Rosenbach M, Salmon PM, Thornton RA, Zink DL, Mandala SM (1998) Inhibition of fungal sphingolipid biosynthesis by rustimicin, galbonolide B and their new 21-hydroxy analogs. J Antibiot 51:837–844CrossRefGoogle Scholar
  94. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901CrossRefGoogle Scholar
  95. Hashimoto S (2009) Micafungin: a sulfated echinocandin. J Antibiot 62:27–35CrossRefGoogle Scholar
  96. Hauser D, Sigg HP (1971) Isolierung und Abbau von Sordarin. Helv Chim Acta 54:187–1190CrossRefGoogle Scholar
  97. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisted. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  98. Hellwig, V, Dasenbrock J, Klostermeyer D, Kroiß S, Sindlinger T, Spiteller P, Steffan B, Steglich W, Engler-Lohr M, Semar S, Anke T (1999) New benzodioxepin type strobilurins from basidiomycetes. Structural revision and determination of the absolute configuration of strobilurin D and related β-methoxyacylate antibiotics. Tetrahedron 55:10101–10118CrossRefGoogle Scholar
  99. Herreros E, Martinez CM, Almela MJ, Marriott MS, De Las Heras FD, Gargallo-Viola D (1998) Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob Agents Chemother 42:2863–2869Google Scholar
  100. Herreros E, Almela MJ, Lozano S, de las Heras FG, Gargallo-Viola D (2001) Antifungal activities and cytotoxicity studies of six new azasordarins. Antimicrob Agents Chemother 45:3131–3139CrossRefGoogle Scholar
  101. Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74:28–39CrossRefGoogle Scholar
  102. Hikino H, Asada Y, Arihara S et al. (1972) Fungal metabolites. II. Fusidic acid, a steroidal antibiotic from Isaria kogane. Chem Pharm Bull 20:1067–1069CrossRefGoogle Scholar
  103. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Gene Dev 17:2205–2232CrossRefGoogle Scholar
  104. Horn WS, Smith JL, Bills GF, Raghoobar SL, Helms GL, Kurtz MB, Marrinan JA, Frommer BR (1992) Sphingofungins E and F: novel serinepalmitoyl transferase inhibitors from Paecilomyces variotii. J Antibiot 45:1692–1696CrossRefGoogle Scholar
  105. Ikai K, Shiomi K, Takesako K, Mizutani S, Yamamoto J, Ogawa Y, Ueno M, Kato I (1991) Structures of aureobasidins B to R. J Antibiot 44:1187–1198CrossRefGoogle Scholar
  106. Iwamoto T, Fujie A, Sakamoto K, Tsurumi Y, Shigematsu N, Yamashita M, Hashimoto S, Okuhara M, Kohsaka M (1994a) WF11899A, B and C, novel antifungal lipopeptides. I. Fermentation, isolation and physicochemical properties. J Antibiot 47:1084–1091Google Scholar
  107. Iwamoto T, Fujie A, Nitta K, Hashimoto S, Okuhara M, Kohsaka M (1994b) WF11899A, B and C, novel antifungal lipopeptides. II. Biological properties. J Antibiot 47:1092–1097CrossRefGoogle Scholar
  108. Jones RN, Fritsche TR, Sader HS, Ross JE (2006) activity of retapamulin (SB-275833), a novel pleuromutilin, against selected resistant Gram-positive cocci. Antimicrob Agents Chemother 50:2583–2586CrossRefGoogle Scholar
  109. Justice CJ, Hsu M, Tse B, Ku T, Baljovec J, Schmatz D, Nielsen J (1998) Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273:3148–3151CrossRefGoogle Scholar
  110. Justice MC, Ku T, Hsu MJ, Carniol K, Schmatz D, Nielsen J (1999) Mutations in ribosomal protein L10e confer resistance to the fungal specific eukaryotic elongation factor 2 inhibitor sordarin. J Biol Chem 274:4869–4875CrossRefGoogle Scholar
  111. Kamai Y, Kakuta M, Shibayama T, Fukuoka T, Kuwahara S (2005) Antifungal activities of R-135853, a sordarin derivative, in experimental candidiasis in mice. Antimicrob Agents Chemother 49:52–56CrossRefGoogle Scholar
  112. Kanasaki R, Sakamoto K, Hashimoto M, Takase S, Tsurumi Y, Jujie A, Hino M, Hashimoto S, Hori Y (2006a) FR209602 and related compounds, novel antifungal lipopeptides from Coleophoma crateriformis No.738. I. Taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot 59:137–144CrossRefGoogle Scholar
  113. Kanasaki R, Abe F, Furukawa S, Yoshikawa K, Jujie A, Hino M, Hashimoto S, Hori Y (2006b) FR209602 and related compounds, novel antifungal lipopeptides from Coleophoma crateriformis No. 738. II. In vitro and in vivo antifungal activity. J Antibiot 59:145–148CrossRefGoogle Scholar
  114. Kanasaki R, Abe F, Kobayashi M, Katsuoka M, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S, Hori Y (2006c) FR220897 and FR220899, novel antifungal lipopeptides from Coleophoma empetri No. 14573. J Antibiot 59:149–157CrossRefGoogle Scholar
  115. Kanasaki R, Kobayashi M, Fujine K, Sato I, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S, Hori Y (2006d) FR227673 and FR190293, novel antifungal lipopetides from Chalara sp. No. 22210 and Tolypocladium parasiticum No. 16616. J Antibiot 59:158–167CrossRefGoogle Scholar
  116. Kavanagh F, Hervey A, Robbins WJ (1951) Antibiotic substances from basidiomycetes. VIII, Pleurotus mutilus (Fr.) Sacc. and Pleurotus passeckerianus. Proc Natl Acad Sci USA 37:570–574CrossRefGoogle Scholar
  117. Kennedy TC, Webb G, Cannell RJP, Kinsman OS, Middleton RF, Sidebottom PJ, Taylor NL, Dawson MJ, Buss AD (1998) Novel inhibitors of fungal protein synthesis produced by a strain of Graphium putredinis. Isolation, characterisation and biological properties. J Antibiot 51:1012–1018CrossRefGoogle Scholar
  118. Kihara A, Igarashi J (2008) Production and release of sphingosine 1-phosphate and the phosphorylated form of the immunomodulator FTY720. Biochim Biophys Acta 1781:496–502CrossRefGoogle Scholar
  119. Kinsman OS, Chalk PA, Jackson HC, Middleton RF, Shuttleworth A, Rudd BAM, Jones CA, Noble HM, Wildman HG, Dawson MJ, Stylli C, Sidebottom PJ, Lamont B, Lynn S, Hayes MV (1998) Isolation and characterization of an antifungal antibiotic (GR135402) with protein synthesis inhibition. J Antibiot 51:41–49CrossRefGoogle Scholar
  120. Kiuchi M, Adachi K, Kohara T, Minoguchi M, Hanano T, Aoki Y, Mishina T, Arita M, Nakao N, Ohtsuki M, Hoshino Y, Teshima K, Chiba K, Sasaki S, Fujita T (2000) Synthesis and immunosuppressive activity of 2-substitute 2-aminopropane-1,3-diols and 2-aminoethanols. J Med Chem 43:2946–2961CrossRefGoogle Scholar
  121. Kluepfel D, Bagli J, Baker H, Charest M-P, Kudelski AN, Segal S, Vezina C (1972) Myriocin, a new antifungal antibiotic from Myriococcum albomyces. J Antibiot 25:109–115CrossRefGoogle Scholar
  122. Knauseder F, Brandl E (1976) Pleuromutilins: fermentation, structure and biosynthesis. J Antibiot 29:125–131CrossRefGoogle Scholar
  123. Kobayashi M, Ikudo S, Abe F, Nitta K, Hashimoto M, Fujie A, Hino M, Hori Y (2004) FR227244, a novel antifungal antibiotic from Myrothecium cinctum No. 002. II. Biological properties and mode of action. J Antibiot 57:788–796CrossRefGoogle Scholar
  124. Kobayashi S, Mori K, Wakabayashi T, Yasuda S, Hanada K (2001) Convergent total synthesis of khafrefungin and its inhibitory activity of fungal sphingolipid syntheses. J Org Chem 66:5580–5584CrossRefGoogle Scholar
  125. Komori T, Itoh Y (1985) Chaetiacandin, a novel papulacandin. II. Structure determination. J Antibiot 38:544–546CrossRefGoogle Scholar
  126. Komori T, Yamashita M, Tsurumi Y, Kohsaka M (1985) Chaetiacandin, a novel papulacandin. I. Fermentation, isolation and characterization. J Antibiot 38:455–459CrossRefGoogle Scholar
  127. Kozubowski L, Lee SC, Heitman J (2009) Signalling pathways in the pathogenesis of Cryptococcus. Cell Microbiol 11:370–380CrossRefGoogle Scholar
  128. Kraiczy P, Haase U, Gencic S Flindt S, Anke T, Brandt U, von Jagow G (1996) The molecular basis for the natural resistance of the cytochrome bc1 complex from strobilurin-producing basidiomycetes to center Qp inhibitors. Eur J Biochem 235:54–63CrossRefGoogle Scholar
  129. Kurome T, Inoue T, Takesako K, Kato I, Inami K, Shiba T (1998) Syntheses of antifungal aureobasidin A analogs with alkyl chains for structure-activity relationship. J Antibiot 51:359–367CrossRefGoogle Scholar
  130. Liang H (2008) Sordarin, an antifungal agent with a unique mode of action. Beilstein J Org Chem 4. doi:10.3762/bjoc.4.31Google Scholar
  131. Liao J, Tao J, Linc G, Liud D (2005) Chemistry and biology of sphingolipids. Tetrahedron 61:4715–4733CrossRefGoogle Scholar
  132. Lolk L, Pøhlsgaard J, Jepsen AS, Hansen LH, Nielsen H, Steffansen SI, Sparving L, Nielsen AB, Vester B, Nielsen P (2008) A click chemistry approach to pleuromutilin conjugates with nucleosides or acyclic nucleoside derivatives and their binding to bacterial ribosome. J Med Chem 51:4957–4967CrossRefGoogle Scholar
  133. Long KS, Hansen LH, Jakobsen L, Vester B (2006) Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center. Antimicrob Agents Chemother 50:1458–1462CrossRefGoogle Scholar
  134. Lóránd T, Kocsis B (2007) Recent advances in antifungal agents. Mini Rev Med Chem 7:900–911CrossRefGoogle Scholar
  135. Lorenzen K, Anke T (1998) Biologically active metabolites from basidiomycetes. Curr Org Chem 2:329–364Google Scholar
  136. Macian F (2005) NF-AT proteins: key regulators of T-cell development and functions. Nat Rev Immunol 5:472–484CrossRefGoogle Scholar
  137. Mandala SM, Thornton RA, Frommer BR, Curotto JE, Rozdilsky W, Kurtz MB, Giacobbe RA, Bills GF, Cabello MA, Martín I, Peláez F, Harris GH (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot 48:349–356CrossRefGoogle Scholar
  138. Mandala SM, Thornton RA, Frommer BR, Dreikorn S, Kurtz MB (1997a) Viridiofungins, novel inhibitors of sphingolipid synthesis. J Antibiot 50:339–343CrossRefGoogle Scholar
  139. Mandala SM, Thornton RA, Rosenbach M, Milligan J, Garcia-Calvo M, Bull HG, Kurtz MB (1997b) Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem 272:32709–32714CrossRefGoogle Scholar
  140. Mandala SM, Thornton RA, Milligan J, Rosenbach M, Garcia-Calvo M, Bull HG, Harris G, Abruzzo GK, Flattery AM, Gill CJ, Bartizal K, Dreikorn S, Kurtz MB (1998) Rustimicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. J Biol Chem 273:14942–14949CrossRefGoogle Scholar
  141. Mandras N, Tullio V, Allizond V, Scalas D, Banche G, Roana J, Robbiano F, Fucale G, Malabaila A, Cuffini AM, Carlone N (2009) In vitro activities of fluconazole and variconazole against clinical isolates of candida ssp. determined by disk diffusion testing in Turin, Italy. Antimicrob Agents Chemother 53:1657–1659CrossRefGoogle Scholar
  142. Martínez A, Regadera J, Jimenez E, Santos I, Gargallo-Viola D (2001) Antifungal efficacy of GM237354, a sordarin derivative, in experimental oral candidiasis in immunosuppressed rats. Antimicrob Agents Chemother 45:1008–1013CrossRefGoogle Scholar
  143. Mathew BP, Nath M (2009) Recent approaches to antifungal therapy for invasive mycoses. ChemMedChem 4:310–323CrossRefGoogle Scholar
  144. McConnell JL, Wadzinski BE (2009) Targeting protein serine/threonine phosphatases for drug development. Mol Pharm 75:1249–1261CrossRefGoogle Scholar
  145. McQuiston TJ, Haller C, Del Poeta M (2006) Sphingolipids as targets for microbial infections. Mini Rev Med Chem 6:671–680CrossRefGoogle Scholar
  146. Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH, Rothman KJ, Hendricks KA (2006) Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ Health Perspect 114:237–241CrossRefGoogle Scholar
  147. Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, Kawasaki T (1995) Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-I/myriocin. Biochem Biophys Res Commun 211:396–403CrossRefGoogle Scholar
  148. Mizoguchi J, Saito T, Mizuno K, Hayano K (1977) On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae. J Antibiot 30:308–313CrossRefGoogle Scholar
  149. Mizuno K, Yagi A, Satoi S, Takada M, Hayashi M (1977) Studies on aculeacin. I. Isolation and characterization of aculeacin A. J Antibiot 30:297–302CrossRefGoogle Scholar
  150. Mohr J, Johnson M, Cooper T, Lewis S, Ostrosky-Zeichner L (2008) Current options in antifungal pharmacology. Pharmacotherapy 28:614–645CrossRefGoogle Scholar
  151. Momoi M, Tanoue D, Sun Y, Takematsu H, Suzuki Y, Suzuki, M, Suzuki A, Fujita T, Kozutsumi Y (2004) SLI1 (YGR212W) is a major gene conferring resistance to sphingolipid biosynthesis inhibitor ISP-1, and encodes an ISP-1 N-acetyltransferase in yeast. Biochem J 381:321–328CrossRefGoogle Scholar
  152. Monk BC, Goffeau A (2008) Outwitting multidrug resistance to antifungals. Science 312:367–369CrossRefGoogle Scholar
  153. Mukhopadhyay T, Ganguli BN, Fehlhaber HW, Kogler H, Vertesy L (1987a) Mulundocandin, a new lipopeptide antibiotic. II. Structure elucidation. J Antibiot 40:281–289CrossRefGoogle Scholar
  154. Mukhopadhyay T, Roy K, Coutinho L, Rupp RH, Ganguli BN, Fehlhaber HW (1987b) Fumifungin, a new antifungal antibiotic from Aspergillus fumigatus Fresenius 1863. J Antibiot 40:1050–1052CrossRefGoogle Scholar
  155. Mukhopadhyay T, Roy K, Bhat RG, Sawant SN, Blumbach J, Ganguli BN, Fehlhaber HW Kogler H (1992) Deoxymulundocandin - a new echinocandin type antifungal antibiotic. J Antibiot 45:618–623CrossRefGoogle Scholar
  156. Nagiec M, Nagiec EE, Baltisberger JA, Wells GB, Lester RL, Dickson RC (1997) Sphingolipid synthesis as target for antifungal drugs. Complementation of the inositol phophorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272:9809–9817CrossRefGoogle Scholar
  157. Nakamura M, Mori Y, Okuyama K, Tanikawa K, Yasuda S, Hanada K, Kobayashi S (2003) Chemistry and biology of khafrefungin. Large-scale synthesis, design, and structure-activity relationship of khafrefungin, an antifungal agent. Org Biomol Chem 1:3362–3376CrossRefGoogle Scholar
  158. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefGoogle Scholar
  159. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 66:1022–1037CrossRefGoogle Scholar
  160. Nicholas GM, Blunt JW, Cole ALJ, Munro MHG (1997) Investigation of the New Zealand basidiomycete Favolaschia calocera: revision of the structures of 9-methoxystrobilurins K and L, strobilurin D, and hydroxystrobilurin D. Tetrahedron Lett 38:7465–7468CrossRefGoogle Scholar
  161. Nierhaus KH, Wittman HG (1980) Ribosomal function and its inhibition by antibiotics in prokaryotes. Naturwissenschaften 67:234–250CrossRefGoogle Scholar
  162. O’Neill AJ, Chopra I (2006) Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol Microbiol 59:664–676CrossRefGoogle Scholar
  163. O’Neill AJ, Larsen AR, Henriksen AS, Chopra I (2004) A fusidic acid-resistant epidemic strain of Staphylococcus aureus carries the fusB determinant, whereas fusA mutations are prevalent in other resistant isolates. Antimicrob Agents Chemother 48:3594–3597CrossRefGoogle Scholar
  164. O’Neill AJ, McLaws F, Kahlmeter G, Henriksen AS, Chopra I (2007) Genetic basis of resistance to fusidic acid in Staphylococci. Antimicrob Agents Chemother 51:1737–1740CrossRefGoogle Scholar
  165. Obeid LM, Okamoto Y, Mao C (2002) Yeast sphongolipids: metabolism and biology. Biochim Biophys Acta 1585:163–171CrossRefGoogle Scholar
  166. Oda T (2006) Effects of 2′-demethoxy-2′-propoxygriseofulvin on microtubule distribution in chinese hamster V79 cells. J Antibiot 59:114–116CrossRefGoogle Scholar
  167. Odom A, Del Poeta M, Perfect J, Heitman J (1997) The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. Antimicrob Agents Chemother 41:156–161Google Scholar
  168. Ogita T, Hayashi A, Sato S, Furutani W, Sankyo KK (1987) Antibiotic zopfimarin. Japanese Patent 62–40292Google Scholar
  169. Okada H, Kamiya S, Shiina Y, Suwa H, Nagashima M, Nakajima S, Shimokawa H, Sugiyama E, Kondo H, Kojiri K, Suda H (1998) BE-31405, a new antifungal antibiotic produced by Penicillium minioluteum. I. Description of producing organism, fermentation, isolation, physicochemical and biological properties. J Antibiot 51:1081–1086CrossRefGoogle Scholar
  170. Onishi JC, Milligan JA, Basilio A, Bergstrom J, Curotto J, Huang L, Meinz M, Nallin-Omstead M, Pelaez F, Rew, D, Salvatore M, Thompson J, Vicente F, Kurtz MB (1997) Antimicrobial activity of viridiofungins. J Antibiot 30:334–338CrossRefGoogle Scholar
  171. Onishi JC, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L, Cabello A, Vicente F, Pelaez F, Diez MT, Martin I, Bills G, Giacobbe R, Dombrowski A, Schwartz R, Morris S, Harris G, Tsipouras A, Wilson K, Kurtz MB (2000) Discovery of novel antifungal (1,3)-β-d-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377CrossRefGoogle Scholar
  172. Onyewu C, Blankenship JR, Del Poeta M, Heitman J (2003) Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 47:956–964CrossRefGoogle Scholar
  173. Ostrosky-Zeichner L, Rex JH, Pappas PG, Hamill RJ, Larsen RA, Horowitz HW, Powderly WG, Hyslop N, Kauffman CA, Cleary J, Mangino JE, Lee J (2003) Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother 47:3149–3154CrossRefGoogle Scholar
  174. Panackal AA, Gribskov JL, Staab JF, Kirby KA, Rinaldi M, Marr KA (2006) Clinical significance of azole antifungal drug cross-resistance in Candida glabrata. J Clin Microbiol 44:1740–1743CrossRefGoogle Scholar
  175. Panda D, Rathinasamy K, Santra MK, Wilson L (2005) Kinetic suppression of microtubule dynamic instability by griseofulvin: implications for its possible use in the treatment of cancer. Proc Natl Acad Sci USA 102:9878–9883CrossRefGoogle Scholar
  176. Pasqualotto AC, Denning DW (2008) New and emerging treatments for fungal infections. J Antimicrob Chemother 61[Suppl.1]:i19-i30CrossRefGoogle Scholar
  177. Patterson TF (2005) Advances and challenges in management of invasive mycoses. Lancet 366:1013–1025CrossRefGoogle Scholar
  178. Perlin DS (2007) Resistance to echinocandin-class antifungal drugs. Drug Resist Updates 10:121–130CrossRefGoogle Scholar
  179. Perry MJ, Hendricks-Gittins A, Stacey LM, et al (1983) Fusidane antibiotics produced by dermatophytes. J Antibiot 36:1659–1663CrossRefGoogle Scholar
  180. Poehlsgaard J, Douthwaite S (2005) The bacterial ribosome as target for antibiotics. Nat Rev Microbiol 3:870–881CrossRefGoogle Scholar
  181. Pringle M, Poehlsguard J, Vester B, Long KS (2004) Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol Microbiol 54:1295–1306CrossRefGoogle Scholar
  182. Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merill AH (2008) Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J Lipid Res 49:1621–1639CrossRefGoogle Scholar
  183. Rebacz B, Larsen TO, Clausen MH, Rønnest MH, Löffler H, Ho AD, Krämer A (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67:6342–6350CrossRefGoogle Scholar
  184. Renslo AR (2007) The echinocandins: total and semi-synthetic approaches in antifungal drug discovery. Anti Infect Agents Med Chem 6:201–212CrossRefGoogle Scholar
  185. Rhome R, Del Poeta M (2009) Lipid signaling in pathogenic fungi. Annu Rev Microbiol 63:119–131CrossRefGoogle Scholar
  186. Rigopoulos D, Larios G (2008) Fusidic acid: a valuable agent for controlling Staphylococcus aureus skin infections. Acta Derm Venereol Suppl 216:7–13CrossRefGoogle Scholar
  187. Rocha EMF, Garcia-Effron G, Park S, Perlin DS (2007) A Ser678Pro substitution in Fks1p confers resistance to echinocandin drugs in Aspergillus fumigatus. Antimicrob Agents Chemother 51:4174–4176CrossRefGoogle Scholar
  188. Rodriguez MJ, Zweifel MJ, Farmer JD, Gordee RS, Loncharich RJ (1996) Relationship between structure and biological activity of novel R106 analogs. J Antibiot 49:386–389CrossRefGoogle Scholar
  189. Rønnest MH, Rebacz B, Markworth L, Terp AH, Larsen TO Krämer A, Clausen MH (2009) Synthesis and structure-activity relationship of griseofulvin analogues as inhibitors of centrosomal clustering in cancer cells. J Med Chem 52:3342–3347CrossRefGoogle Scholar
  190. Roy K, Mukhopadhyay T, Reddy GC, Desikan KR, Ganguli BN (1987) Mulundocandin, a new lipopeptide antibiotic. I. Taxonomy, fermentation, isolation and characterization. J Antibiot 40:275–280CrossRefGoogle Scholar
  191. Sable CA, Strohmaier KM, Chodakewitz JA (2008) Advances in antifungal therapy. Annu Rev Med 59:361–379CrossRefGoogle Scholar
  192. Saleem M, Ali MS, Hussain S, jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152CrossRefGoogle Scholar
  193. SanMillian MJ, Vazquez D, Modolell J (1975) Interaction of fusidic acid with peptidyl-transfer-ribonucleic-acid ribosome complex. Eur J Biochem 57:431–440CrossRefGoogle Scholar
  194. Satoi S, Yagi A, Asano K, Mizuno K, Watanabe T (1977) Studies on aculeacin. II. Isolation and characterization of aculeacins B, C, D, E, F and G. J Antibiot 30:303–307CrossRefGoogle Scholar
  195. Sauter H (2007) Strobilurins and other complex III inhibitors. In: Krämer W, Schirmer U (eds) Modern Crop Protection Compounds. Wiley-VCH, Weinheim, pp 457–495Google Scholar
  196. Sauter H, Steglich W, Anke T (1999) Strobilurins: evolution of a new class of active substances. Angew Chem Int Ed 38:1328–1349CrossRefGoogle Scholar
  197. Schlünzen F, Pyetan E, Fucini P, Yonath A, Harms JM (2004) Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol Microbiol 54:1287–1294CrossRefGoogle Scholar
  198. Schneider G, Anke H, Sterner O (1995) Xylarin, an antifungal Xylaria metabolite with an unusual tricyclic uronic acid moiety. Nat Prod Lett 7:309–316CrossRefGoogle Scholar
  199. Schneider P, Misiek M, Hoffmeister (2008) In vivo and in vitro production options for fungal secondary metabolites. Mol Pharmaceut 5:234–242CrossRefGoogle Scholar
  200. Schramm G, Steglich W, Anke T, Oberwinkler F (1978) Antibiotika aus Basidiomyceten, III. Strobilurin A und B, antifungische Stoffwechselprodukte aus Strobilurus tenacellus. Chem Ber 111:2779–2784CrossRefGoogle Scholar
  201. Schwartz RE, Giacobbe RA, Boand JA, Monaghan RL (1989) L-671,329, a new antifungal agent. I. Fermentation and isolation. J Antibiot 42:163–167CrossRefGoogle Scholar
  202. Schwartz RE, Smith SK, Onishi JC, Meinz M, Kurtz M, Giacobbe RA, Wilson KE, Liesch J, Zink D, Horn W, Morris S, Cabello S, Vicente F (2000) Isolation and structural determination of enfumafungin, a triterpene glycoside antifungal agent that is a specific inhibitor of glucan synthesis. J Am Chem Soc 122:4882–4886CrossRefGoogle Scholar
  203. Segal BH (2009) Aspergillosis. N Engl J Med 360:1870–1884CrossRefGoogle Scholar
  204. Shea JM, Del Poeta M (2006) Lipid signaling in pathogenic fungi. Curr Opin Microbiol 9:352–358CrossRefGoogle Scholar
  205. Sonda S, Sala G, Ghidoni R, Hemphill A, Pieters J (2005) Inhibitory effect of aureobasidin A on Toxoplasma gondii. Antimicrob Agents Chemother 49:1794–1801CrossRefGoogle Scholar
  206. Spahn CMT, Prescott CD (1996) Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74:423–439CrossRefGoogle Scholar
  207. Spring DR (2005) Chemical genetics to chemical genomics: small molecules offer big insights. Chem Soc Rev 34:472–482CrossRefGoogle Scholar
  208. Steinbach WJ, Reedy JL, Cramer RA, Perfect JR, Heitman J (2007) Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5:418–430CrossRefGoogle Scholar
  209. Stie J, Fox D (2008) Calcineurin regulation in fungi and beyond. Eukaryot Cell 7:177–186CrossRefGoogle Scholar
  210. Sugimoto Y, Sakoh H, Yamada K (2004) IPC synthase as a useful target for antifungal drugs. Curr Drug Tragets Infect Dis 4:311–322CrossRefGoogle Scholar
  211. Sundriyal S, Sharma RK, Jain R (2006) Current advances in antifungal targets and drug development. Curr Med Chem 13:1321–1335CrossRefGoogle Scholar
  212. Suzuki E, Tanaka AK, Toledo MS, Levery SB, Straus AH, Takahashi HK (2008) Trypanosomatid and fungal glycolipids and sphingolipids as infectivity factors and potential targets for the development of new therapeutic strategies. (2008) Biochim Biophys Acta 1780:362–369Google Scholar
  213. Takabe K, Paugh SW, Milstein S, Spiegel S (2008) “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 60:181–195CrossRefGoogle Scholar
  214. Takatsu T, Nakayama H, Shimazu A, Furihata K, Ikeda K, Furihata K, Seto H, Otake N (1985) Rustimicin, a new macrolide antibiotic active against wheat stem rust fungus. J Antibiot 38:1806–1809CrossRefGoogle Scholar
  215. Takesako K, Ikai K, Haruna F, Endo M, Shimanka K, Sono E, Nakamura T, Kato I (1991) Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation and properties. J Antibiot 44:919–924CrossRefGoogle Scholar
  216. Takesako K, Kuroda H, Inoue T, Haruna F, Yoshikawa Y, Kato I, Uchida T, Hiratani T, Yamaguchi H (1993) Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiot 46:1414–1420CrossRefGoogle Scholar
  217. Tojo T, Ohki H, Shiraishi N, Matsuya T, Matsuda H, Murano K, Barrett D, et al (2005) Cyclic hexapeptides having antibiotic activity. US Patent 6,884,868 B1Google Scholar
  218. Traber R, Keller-Juslen C, Loosli HR, Kuhn M, von Wartburg A (1979) Cyclopeptid-Antibiotika aus Aspergillus-Arten. Struktur der Echinocandine C und D. Helv Chim Acta 62:1252–1259CrossRefGoogle Scholar
  219. Traczewski MM, Brown SD (2008) Proposed MIC and disk diffusion microbiological cutoffs and spectrum of activity of retapamulin, a novel topical antimicrobial agent. Antimicrob Agents Chemother 52:3863–3867CrossRefGoogle Scholar
  220. Traxler P, Gruner J, Auden JAL (1977a) Papulacandins, a new family of antibiotics with antifungal activity. I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E. J Antibiot 30:289–296CrossRefGoogle Scholar
  221. Traxler P, Fritz H, Richter WJ (1977b) Zur Struktur von Papulacandin B, einem neuen antifungischen Antibiotikum. Helv Chim Acta 60:578–584CrossRefGoogle Scholar
  222. Traxler P, Fritz H, Fuhrer H, Richter WJ (1980) Papulacandins, a new family of antibiotics with antifungal activity. Structures of papulacandins A, B, C and D. J Antibiot 33:967–978CrossRefGoogle Scholar
  223. Traxler P, Tosch W, Zak O (1987) Papulacandins - synthesis and biological activity of papulacandin B derivatives. J Antibiot 40:1146–1164CrossRefGoogle Scholar
  224. Triana-Alonso FJ, Chakraburtty K, Nierhaus KH (1995) The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J Biol Chem 270:20473–20478CrossRefGoogle Scholar
  225. VanMiddlesworth F, Giacobbe RA, Lopez M, Garrity G, Bland JA, Bartizal K, Fromtling RA, Polishook J, Zweerink M, Edison AM, Rozdil W, Wilson KE Nonaghan RL (1992) Sphingofungins A, B, C and D; a new family of antifungal agents. J Antibiot 45:861–867CrossRefGoogle Scholar
  226. Vasquez JA, Sobel JD (2006) Anidulafungin: a novel echinocandin. Clin Infect Dis 43:215–222CrossRefGoogle Scholar
  227. Verbist L (1990) The antimicrobial activity of fusidic acid. J Antimicrob Chemother 25[Suppl B]:1–5CrossRefGoogle Scholar
  228. Vicente F, Basilio A, Platas G, Collado J, Bills GF, González del Val, A, Martín J, Tormo JR, Harris GH, Zink DL, Justice M, Nielsen Kahn J, Peláez F (2009) Distribution of the antifungal agents sordarins across filamentous fungi. Mycol Res 113:754–770CrossRefGoogle Scholar
  229. Vicente MF, Cabello A, Platas G, Basilio A, Diez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Pelaez F (2001) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813CrossRefGoogle Scholar
  230. Voss KA, Smith GW, Haschek WM (2007) Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim Feed Sci Technol 137:299–325CrossRefGoogle Scholar
  231. Wakabayashi T, Mori K, Kaobayashi S (2001) Total synthesis and structural elucidation of khafrefungin. J Am Chem Soc 123:1372–1375CrossRefGoogle Scholar
  232. Weber RWS, Meffert A, Anke H, Sterner O (2005) Production of sordarin and related metabolites by the coprophilus fungus Podospora pleiospora in submerged culture and in its natural substrate. Mycol Res 109:619–626CrossRefGoogle Scholar
  233. Weber RWS, Kappe R, Paululat T, Mösker E, Anke H (2007) Anti-Candida metabolites from endophytic fungi. Phytochemistry 68:886–892CrossRefGoogle Scholar
  234. Weber W, Anke T, Steffan B, Steglich W (1990a) Antibiotics from basidiomycetes. XXXII. Strobilurin E: A new cytostatic and antifungal E-β-methoxyacrylate antibiotic from Crepidotus fulvotomentosus Peck. J Antibiot 43:207–212CrossRefGoogle Scholar
  235. Weber W, Anke T, Bross M, Steglich W (1990b) Antibiotics from basidiomycetes. XXXIV. Strobilurin D and Strobilurin F: two new cytostatic and antifungal (E)-β-methoxyacrylate antibiotics from Cyphellopsis anomala (Pers. ex Fr.) Sing. Planta Med 56:446–450CrossRefGoogle Scholar
  236. Whitby M (1999) Fusidic acid in the treatment of methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 12:S67-S71CrossRefGoogle Scholar
  237. Wood KA, Kau DA, Wrigley SK, Beneyto R, Renno DV, Ainsworth AM, Penn J, Hill D, Killacky J, Depledge, P (1996) Novel β-methoxyacrylates of the 9-methoxystrobilurin and oudemansin classes produced by the basidiomycete Favolaschia pustulosa. J Nat Prod 59:646–649CrossRefGoogle Scholar
  238. Woolhouse M, Gaunt E (2007) Ecological origins of novel human pathogens. Crit Rev Microbiol 33:231–242CrossRefGoogle Scholar
  239. Wu W-I, McDonough VM, Nickels JZ, Ko J, Fischl AS, Vales TR, Merill AH, Carman GM (1995) Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1. J Biol Chem 270:13171–13178CrossRefGoogle Scholar
  240. Yamaji-Hasegawa A, Takahashi A, Tetsuka Y, Senoh Y, Kobayashi T (2005) Fungal metabolite sulfamisterin suppresses sphingolipid synthesis through inhibition of serine palmitoyltransferase. Biochemistry 44:268–277CrossRefGoogle Scholar
  241. Yano T, Aoyagi A, Kozuma S, Kawamura Y, Tanaka I, Suzuki Y, Takamatsu Y, Takatsu T, Inuaki M (2007) Pleofungins, novel inositol phophoryceramide synthase inhibitors from Phoma sp. SANK 13899. I. Taxonomy, fermentation, isolation, and biological activities. J Antibiot 60:136–142CrossRefGoogle Scholar
  242. Yeung CM, Klein LL, Lartey PA (1996) Preparation and antifungal activity of fusacandin analogs: C-69 sidechain esters. Bioorg Med Chem Lett 6:819–822CrossRefGoogle Scholar
  243. Yonath A (2005) Antibiotics targeting ribosomes: resistance, selectivity, synergism, and cellular regulation. Annu Rev Biochem 74:649–679CrossRefGoogle Scholar
  244. Zakharychev VV, Kovalenko LV (1998) Natural compounds of the strobilurin series and their synthetic analogues as cell respiration inhibitors. Russ Chem Rev 67:535–544CrossRefGoogle Scholar
  245. Zapf S, Anke T, Dasenbrock H, Steglich W (1993) Antifungal metabolites from Agaricus sp. 89139. Bioengineering 1:92Google Scholar
  246. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771CrossRefGoogle Scholar
  247. Zhang Z, Schluesener HJ (2007) FTY720: a most promising immunosuppressant modulating immune cell functions. Mini Rev Med Chem 7:845–850CrossRefGoogle Scholar
  248. Zhong W, Jeffries W, Georgopapadakou NH (2000) Inhibition of inositol phosphoceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob Agents Chemother 44:651–653CrossRefGoogle Scholar
  249. Zjawiony JK (2004) Biologically active compounds from aphyllophorales (polypore) fungi. J Nat Prod 67:300–310CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations