Skip to main content

Production of Beer and Wine

  • Chapter
  • First Online:
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Traditional practices and recent developments of brewing and wine making are reviewed. Details of the beer production process are covered under the headings of raw materials, malt production, steps in the brew house, fermentation, maturation, filtration, stabilisation and packaging. The final beer, some typical analytical data and some beer-like beverages are discussed. The overview on wine making starts with a look at the major grape varieties, their composition and the different wine types resulting. The wine production process is treated under the headings of grape harvest, crushing, pressing, fermentation, clarification, stabilisation, fining, storage and bottling. A short overview is also given for sparkling and fortified wines. Conclusions on the production of both beer and result in the statement that many new opportunities were opened by modern scientific findings and technical developments, e.g. genetic engineering of yeasts, immobilisation procedures and process modelling. However, these recent developments (e.g. genetic manipulation) are only seldom industrially used due to their restricted acceptance by consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almadanim MC, Baleiras-Couto MM, Pereira HS, Carneiro LC, Fevereiro P, Eiras-Dias JE, Morais-Cecilio L, Viegas W, Veloso MM (2007) Genetic diversity of the grapevine (Vitis vinifera L.) cultivars most utilized for wine production in Portugal. Vitis 46:116–119

    CAS  Google Scholar 

  • Back W (ed) (2008) Ausgewählte Kapitel der Brauereitechnologie. Hans Carl, Nürnberg, 368 pp

    Google Scholar 

  • Bamforth CW (ed) (2006) Brewing – new technologies. CRC, Boca Raton, 484 pp

    Google Scholar 

  • Barth HJ, Klinke C, Schmidt C (1994) The hop atlas – the history and geography of cultivated plant. Hans Carl, Nürnberg, 384 pp

    Google Scholar 

  • Bendler E, Lemaire M (1999) Enzymes in the brewing industry. Brauwelt 139:241–243

    CAS  Google Scholar 

  • Boulton C, Quain D (2006) Brewing yeast and fermentation. Wiley, New York, 656 pp

    Google Scholar 

  • Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1995) Principles and practices of winemaking. Chapman and Hall, New York, 604 pp

    Google Scholar 

  • Branyik T, Vicente AA, Dostalek P, Teixeira JA (2005) Continuous beer fermentation using immobilized yeast cell bioreactor systems. Biotechnol Prog 21:653–663

    Article  CAS  Google Scholar 

  • Braun F, Back W, Krottenthaler M (2009) Beer filtration using cellulose fibres – a review. Brew Sci 62:33–43

    Google Scholar 

  • Briggs DE, Boulton CA, Brookes PA, Stevens R (2004) Brewing science and practice. CRC, Boca Raton, 881 pp

    Google Scholar 

  • Buschkiel D, Pescher G, Czermak P, Asmundson RV, Janssen DE (1994) Biologischer Säureabbau in Wein – Anwendung von Starterkulturen und Immobilisierungsverfahren. Bioforum 17:3–8

    CAS  Google Scholar 

  • Castellari M, Arfelli G, Riponi C, Amati A (1998) Evolution of phenolic compounds in red winemaking as affected by must oxygenation. Am J Enol Vitic 49:91–94

    CAS  Google Scholar 

  • Chibata I (ed) (1978) Immobilized enzymes research and development. Wiley, New York, 284 pp

    Google Scholar 

  • Clary CD, Steinhauer RE, Frisinger JE, Peffer TE (1990) Evaluation of machine vs hand-harvested Chardonnay. Am J Enol Vitic 41:176–181

    Google Scholar 

  • Cohen S, Chang ACY, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244

    Article  CAS  Google Scholar 

  • Constantini V, Bellincontro A, DeSantis D, Botondi R, Mencarelli F (2006) Metabolic changes of Malvasia grapes for wine production during postharvest drying. J Agric Food Chem 54:3334–3340

    Article  CAS  Google Scholar 

  • Coombe BG, McCarthy MG (1997) Identification and naming of the inception of aroma development in ripening grape berries. Aust J Grape Wine Res 3:18–20

    Article  CAS  Google Scholar 

  • Defernez M, Foxall RJ, O’Malley CJ, Montague G, Ring SM, Kemsley EK (2007) Modelling beer fermentation variability. J Food Eng 83:167–172

    Article  Google Scholar 

  • De Frenne E (1998) Eigenschaften der wichtigsten Hefen in der Kellereiwirtschaft. Rebe Wein 11:435–436

    Google Scholar 

  • De Keukeleire D (2000) Fundamantals of beer and hop chemistry. Quim Nov 23:108–112

    Article  CAS  Google Scholar 

  • Dequin S (2001) The potential of genetic engineering for improving brewing, wine making and baking yeasts. Appl Microbiol Biotechnol 56:577–588

    Article  CAS  Google Scholar 

  • Divis C, Cashon R, Cavin F-J, Prevost H (1994) Immobilized cell technology in wine production. Crit Rev Biotechnol 14:135–153

    Article  Google Scholar 

  • Domingues L, Onnela M-L, Teixeira JA, Lima N, Penttilä M (2000) Construction of a flocculent brewer’s yeast strain secreting Aspergillus niger β-galacosidase. Appl Microbiol Biotechnol 54:97–103

    Article  CAS  Google Scholar 

  • Dorneles D, Pereira M, Iara M, Chociai MB, Bordin B, Tania M (2005) Influence of the use of selected and non-selected yeasts in red wine production. Bras Arch Biol Technol 48:747–751

    CAS  Google Scholar 

  • Dragone G, Mussatto SI, Silva JBA (2007) High gravity brewing by continuous process using immobilised yeast: effect of wort original gravity on fermentation performance. J Inst Brew 113:391–398

    Article  CAS  Google Scholar 

  • Duarte WF, Dias DR, Pereira GVM, Gervasio IM, Schwan RF (2009) Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J Ind Microbiol Biotechnol 36:557–569

    Article  CAS  Google Scholar 

  • Einsiedler F, Schwill-Miedaner A, Sommer K, Hamalainen J (1998) Experimental investigations and modelling of complex biochemical and technological processes using the example of mashing. Monatsschr Brauwiss 51:11–21

    CAS  Google Scholar 

  • Eßlinger HM (ed) (2009) Handbook of brewing: processes, technology, markets. Wiley-VCH, Weinheim, 778 pp

    Google Scholar 

  • Evans DE, Surrell A (2008) Comparison of foam quality and the influence of hop alpha-acids and proteins using five foam analysis methods. J Am Brew Chem 66:1–10

    CAS  Google Scholar 

  • Fels S, Reckelbus B, Gosselin Y (1998) Why use dried yeast for brewing your beers? Brew Distill Int 29:17–19

    Google Scholar 

  • Fohr M, Meyer-Pittroff R (1998) New developments in the field of wort boiling – thermal vapour compression – aspects of internal boiling. Brauwelt 138:460–464

    Google Scholar 

  • Formisyn P, Vaillant H, Lantreibecq F, Bourgois J (1997) Development of an enzymatic reactor for initiating malolactic fermentation in wine. Am J Enol Viticult 48:345–351

    CAS  Google Scholar 

  • Gan Q, Howell JA, Field RW, England R, Bird MR, O’Shaughnessy CL, McKenchinie MT (2001) Beer clarification by microfiltration – product quality control and fractionation of particles and macromolecules. J Membr Sci 194:185–196

    Article  CAS  Google Scholar 

  • Gibson BR, Laerence SJ, Leclaire JPR, Powell CD, Smart KA (2008) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569

    Article  CAS  Google Scholar 

  • Gillespie H (1998) From grape to table: the chemistries of wine. Today Chem Work 7:43–51

    Google Scholar 

  • Goessinger, M, Leindl G, Steidl R, Wendelin S, Fischerleitner E, Schober V (2006) Investigations into the prevention of Boeckser formation in white wine production. Mitt Klosterneuburg 56:224–234

    CAS  Google Scholar 

  • Grieff JT (1966) Das Bantubier, ein nahrhaftes und gesundes Volksgetränk in Südafrika. Brauwelt 106:1809–1812

    Google Scholar 

  • Glatthar J, Heinisch JJ, Senn T (2005) Unmalted triticale cultivars as brewing adjuncts: effects of enzyme activities and composition on beer wort quality. J Sci Food Agric 85:647–654

    Article  CAS  Google Scholar 

  • Güell C (1999) Membrane separation techniques in wine and beer production. Environ Prot Eng 25:87–101

    Google Scholar 

  • Hammond J (1986) The contribution of yeast to beer flavour. Brew Guard 115:27–33

    Google Scholar 

  • Hammond J (1998) Brewing with genetically modified amylolytic yeast. In: Roller S, Harlander S (eds) Genetic modification in the food industry. A strategy for food quality improvement. Blackie, London, pp 129–157

    Chapter  Google Scholar 

  • Hampsey M (1997) A review of phenotypes in Saccharomyces cerevisiae. Yeast 13:1099–1133

    Article  CAS  Google Scholar 

  • Hardwick WA, Oevelen DEJ, Novellie L, Yoshizawa K (1995) Kinds of beer and beerlike beverages. In: Hardwick W A (ed) Handbook of brewing. Dekker, New York, pp 53–83

    Google Scholar 

  • Hartmeier W (1978) Modellversuche zur Sauerstoffentfernung aus Bier mit Hilfe von trägerfixierten Enzymen. Monatsschr Brauerei 31:16–20

    CAS  Google Scholar 

  • Hartmeier W (1979a) Bierstabilisierung mit Papain. Brauerei Rundschau 90:31–34

    CAS  Google Scholar 

  • Hartmeier W (1979b) Bierstabilisierung durch Sauerstoffentfernung mit Glucoseoxidase. Brauerei Rundschau 90:34–37

    CAS  Google Scholar 

  • Hartmeier W (1988) Immobilized biocatalysts. Springer, Berlin, Heidelberg, New York, 212 pp

    Book  Google Scholar 

  • Hartmeier W, Hug H, Pfenninger H (1978) Über die Eigenschaften von gereinigtem Papain und dessen Anwendung zur Stabilisierung von Bier. Brauerei-Rundschau 89:57–76

    CAS  Google Scholar 

  • Hartmeier W, Willox IC (1981) Immobilized glucose oxidase and its use for oxygen removal from beer. Tech Q Master Brew Assoc Am 18:145–149

    CAS  Google Scholar 

  • Heard G (1999) Novel yeasts in winemaking – looking for the future. Food Austral 51:347–352

    Google Scholar 

  • Held R (1998) Hop products: extracts, pellets and modified alpha, beta acids. Tech Q Master Brew Assoc Am 35:133–140

    CAS  Google Scholar 

  • Hauf J, Zimmermann FK, Müller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enz Microb Technol 26:688–698

    Article  CAS  Google Scholar 

  • Iersel van MFM, Meersman E, Arntz M, Rombouts FM, Abee T (1998) Effect of environmental conditions on flocculation and immobilisation of brewer’s yeast during production of alcohol-free beer. J Inst Brew 104:131–136

    Article  Google Scholar 

  • Iersel van MFM, Brower-Post E, Rombouts FM, Abee T (2000) Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer. Enzyme Microb Technol 26:602–607

    Article  Google Scholar 

  • Jäger J, Diekmann J, Lorenz D, Jakob L (1996) Cork-borne bacteria and yeasts as potential producers of off-flavours in wine. Austral J Grape Wine Res 2:35–41

    Google Scholar 

  • Jones HL (1997) Yeast propagation – past, present and future. Brew Guard 126:24–27

    Google Scholar 

  • Kikkert JR, Ali GS, Wallace PG, Reisch B, Reustle GM (2000) Expression of a fungal chitinase in Vitis vinifera L. “Merlot” and “Chardonnay” plants produced by biolistic transformation. Acta Hort 528:297–303

    CAS  Google Scholar 

  • Krüger L (1998) Yeast metabolism and its effects on flavour. Brew Guard 127:24–29

    Google Scholar 

  • Kunze W (2004) Technology brewing and malting. Carl, Nürnberg, 949 pp

    Google Scholar 

  • Leiper KA, Stewart GG, McKeown IP, Nock T, Tompson J (2005) Optimising beer stabilisation by the selective removal of tannoids and sensitive proteins. J Inst Brew 111:118–127

    Article  CAS  Google Scholar 

  • Litzenburger K (1997) The raw material malt and brewhouse work. Brauwelt 137:2038–2044

    Google Scholar 

  • Liu Z, Zhang G, Sun Y (2008) Mutagenizing brewing yeast strain for improving fermentation property of beer. J Biosci Bioeng 106:33–38

    Article  CAS  Google Scholar 

  • Lodolo EJ, Kock JLF, Axcell BC, Brooks M (2008) The yeast Saccharomyces cerevisiae – the main charcter in beer brewing. FEMS Yeast Res 8:1018–1036

    Article  CAS  Google Scholar 

  • Logist F, van Erdeghem PMM, van Impe JF (2009) Efficient deterministic multiple objective optimal control of (bio)chemical processes. Chem Eng Sci 64:2527–2538

    Article  CAS  Google Scholar 

  • Lonvaud-Funel A (1996) Microorganisms of winemaking. Cerevisia 21:55–58

    CAS  Google Scholar 

  • Manusco S, Pisani PL, Bandinelli R, Rinaldelli E (1998) Application of an artificial neuronal network (ANN) for the identification of grapevine genotypes. Vitis 37:27–32

    Google Scholar 

  • Masschelein CA, Ryder DS, Simon JP (1994) Immobilized cell technology in beer production. Crit Rev Biotechnol 14:155–175

    Article  CAS  Google Scholar 

  • McGarrity MJ, McRoberts C, Fitzpatrick M (2003) Identification, cause, and prevention of musty off-flavours in beer. Tech Q Master Brew Assoc Am 40:44–47

    CAS  Google Scholar 

  • Munday D, Dymond G (1998) Yeast handling pure and simple. Brew Distill Int 29:20–21

    Google Scholar 

  • Narziß L (2004) Abriss der Bierbrauerei. Wiley-VCH, Weinheim, 440 pp

    Google Scholar 

  • Nedervelde L van, Verlinden V, Debourg A (1997) Yeast in fermentation: impact of new technologies. Belg J Brew Biotechnol 22:29–36

    Google Scholar 

  • Nedovic V, Willaert R, Laskosek-Cukalovic I, Obradovic B, Bugarski B (2005) Beer production using immobilized cells. In: Nedovic V, Willaert R (eds) Applications of cell immobilization biotechnology. Springer, Dordrecht, Berlin, pp 486–494

    Chapter  Google Scholar 

  • Nevoigt E, Pilger R, Mast-Gerlach E, Schmidt U, Freihammer S, Eschenbrenner M, Garbe L, Stahl U (2002) Genetic engineering of brewing yeast to reduce the content of ethanol in beer. FEMS Yeast Res 2:225–232

    CAS  Google Scholar 

  • Norton S, D’Amore T (1994) Physiological effects of yeast cell immobilization – applications for brewing. Enzym Microb Technol 16:365–375

    Article  CAS  Google Scholar 

  • O’Connor-Cox E (1997) Improving yeast handling in the brewery, part 1: yeast cropping. Brew Guard 126:26–34

    Google Scholar 

  • Ooi BG, Wanamaker LE, Markuszewski BM, Chong NS (2008) Genetic and enological analysis of selected Saccharomyces cerevisiae strains for wine production. Int J Food Sci and Technol 43:1111–1120

    Article  CAS  Google Scholar 

  • O’Rourke T (1999) Process aids and additives used in the brewing industry. Brew Guard 128:30–33

    Google Scholar 

  • O’Rourke T (2002) Colloidal stabilisation of beer. Brew Int 2:23–25

    Google Scholar 

  • Peacock V (1998) Fundamentals of hop chemistry. Tech Q Brew Assoc Am 35:4–8

    CAS  Google Scholar 

  • Pilkington PH, Margaritis A, Mensour NA, Russell I (1998) Fundamentals of immobilised yeast cells for continuous beer fermentation: a review. J Inst Brew 104:19–31

    Article  Google Scholar 

  • Pretorius IS, van der Westhuizen TJ (1991) The impact of yeast genetics and recombinant DNA technology on the wine industry – a review. S Afr J Enol Vitic 12:3–31

    CAS  Google Scholar 

  • Priest FG, Stewart GG (eds) (2006) Handbook of brewing. Dekker, New York, 872 pp

    Google Scholar 

  • Puig S, Ramon D, Prez-Ortin J (1977) Optimised method to obtain stable food-safe recombinant wine yeast strains. J Agric Food Chem 46:1689–1693

    Article  Google Scholar 

  • Rajagopal MV (1977) Production of beer from cassava. J Food Sci 42:532–533

    Article  CAS  Google Scholar 

  • Ragazzo-Sanchez JA, Chalier P, Chevalier-Lucia D, Calderon-Santoyo M, Ghommidh C (2009) Off-flavours detection in alcoholic beverages by electronic nose coupled to GC. Sens Actuators B 140:29–34

    Article  CAS  Google Scholar 

  • Ratnavathi CV, Ravi SB, Subramanian V, Rao NS (2000) A study on the suitability of unmalted sorghum as a breing adjunct. J Inst Brew 106:383–387

    Article  Google Scholar 

  • Reeves G (1999) Wine filtration – it´s all about choices. Austral Grape Wine 4:31–34

    Google Scholar 

  • Reddy LV, Reddy YHK, Reddy LPA, Reddy OVS (2008) Wine production by novel yeast biocatalyst prepared by immobilization on watermelon (Citrullus vulgaris) rind pieces and characterization of volatile compounds. Process Biochem 43:748–752

    Article  CAS  Google Scholar 

  • Rehmanji M, Mola A, Narayanan K, Gopal C (2000) Superior colloidal stabilization of beer by combined treatment with silica (xerogel) and PVPP, Polyclar plus 730®. Tech Q Master Brew Assoc Am 37:113–118

    CAS  Google Scholar 

  • Schlenker R, Thoma S, Oechsle D (1999) Beer stabilisation with PVPP in a recycling system – state of the art. Brauwelt 139:794–800

    CAS  Google Scholar 

  • Schwill-Miedamer A, Einsiedler F, Sommer K (1998) Studies on time optimization of mashing processes. Brauwelt 138:466–471

    Google Scholar 

  • Scott JA, O’Reilly AM (1996) Co-immobilization of selected yeast and bacteria for controlled flavour development in an alcoholic cider beverage. Proc Biochem 31:111–117

    Article  CAS  Google Scholar 

  • Serrano M, Pontens B, Ribéreau-Gayon P (1992) Etude de differentes membranes de microfiltration tangentielle. Comparison avec la filtration sur précouche de diatomées. J Int Sci Vigne Vin 16:97–116

    Google Scholar 

  • Shelton I (1998) Beer off-flavors and their origin in the brewing process. New Brewer 15:59–66

    Google Scholar 

  • Spencer JFT, Spencer DM (1997) Taxonomy: the names of yeasts. In: Spencer JFT, Spencer DM (eds) Yeasts in natural and artificial habitats. Springer, Berlin, Heidelberg, New York, pp 11–32

    Chapter  Google Scholar 

  • Srecec S, Rezic T, Santek B, Maric V (2008) Influence of hops pellets age on α-acids utilization and organoleptic quality of beer. Agric Conspect Sci 73:103–107

    Google Scholar 

  • Tanaka T, Kumagai C, Okazaki N, Akiyama H (1981) Sake brewing and koji making using unsteamed rice. Nippon Jozo Kyojau Zasshi 76:665–669

    CAS  Google Scholar 

  • Taylor DG, Humphrey PM, Boxall J, Smith PJ (1998) Brewing of flavour-style ales with malted cereals other than barley. Tech Q Master Brew Assoc Am 35:20–23

    Google Scholar 

  • Taylor JRN (1992) Mashing with malted grain sorghum. J Am Soc Brew Chem 50:13–18

    CAS  Google Scholar 

  • Techakriengkrai I, Paterson A, Taidi B, Piggott JR (2004) Relationships of sensory bitterness in lager beers to iso-α-acid contents. J Inst Brew 110:51–56

    Article  CAS  Google Scholar 

  • Tovar LR, Olivos M, Gutierrez ME (2008) Pulque, an alcoholic drink from rural Mexico, contains phytase. Its in vitro effects on corn tortilla. Plant Foods Hum Nutr 63:189–194

    Article  CAS  Google Scholar 

  • Trelea IC, Titica M, Corrieu G (2004) Dynamic optimisation of the aroma production in brewing fermentation. J Proc Contr 14:1–16

    Article  CAS  Google Scholar 

  • Uhl W (1998) Maschinelle Traubenernte in Franken. Rebe Wein 4:138–141

    Google Scholar 

  • Urso R, Rantsiou K, Dolci P, Rolle L, Comi G, Cocolin L (2008) Yeast biodiversity and dynamics during sweet wine production as determined by molecular methods. FEMS Yeast Res 8:1053–1062

    Article  CAS  Google Scholar 

  • Valero E, Mauricio JC, Milán MC, Ortega JM (1999) Changes in the urea content of wine under different fermentation and aging conditions by two Saccharomyces cerevisiae races. Biotechnol Lett 21:555–559

    Article  CAS  Google Scholar 

  • Vanderhaegen B, Neven H, Coghe S, Verstrepen KJ, Derdelincks G, Verachtert H (2003) Bioflavoring and beer refermentation. Appl Microbiol Biotechnol 62:140–150

    Article  CAS  Google Scholar 

  • Vanderhaegen B, Neven H, Verachtert H, Derdelincks G (2006) The chemistry of beer aging – a critical review. Food Chem 95: 357–381

    Article  CAS  Google Scholar 

  • Verbelen PJ, De Schutter D, Delvaux F, Verstrepen KJ, Delvaux FR (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28:1515–1525

    Article  CAS  Google Scholar 

  • Verbelen PJ, Dekoninck TML, Saerens SMG, Van Mulders SE, Thevelein JM, Delvaux FR (2009) Impact of pitching rate on yeast fermentation performance and beer flavour. Appl Microbiol Biotechnol 82:155–167

    Article  CAS  Google Scholar 

  • Vigentini I, Fracassetti D, Picozzi C, Foschino R (2009) Polymorphisms of Saccharomyces cerevisiae genes involved in wine production. Curr Microbiol 58:211–218

    Article  CAS  Google Scholar 

  • Villar JC, Canete RE, Manganelly EA (2004) Why adding rice hull ash can benefit beer clarification. Filtr Sep 41:32–33

    Article  CAS  Google Scholar 

  • Virkäjarvi I (1998) Long-term stability of immobilised yeast columns in primary fermentation. J Am Soc Brew Chem 56:70–75

    Google Scholar 

  • Virkajarvi I, Linko M (1999) Immobilization: a revolution in traditional brewing. Naturwissenschaften 86:112–122

    Article  CAS  Google Scholar 

  • Wackerbauer K, Tayama T, Kunert S (1997) Recent findings on the influence of yeast storage on the fermentative activity and vitality of yeasts in subsequent fermentations. Monatsschr Brauwiss 50:132–137

    CAS  Google Scholar 

  • Wang ZY, He XP, Liu N, Zhang BR (2008) Construction of self-cloning industrial brewing yeast with high-glutathion and low-diacetyl production. Int J Food Sci Technol 43:989–994

    Article  CAS  Google Scholar 

  • Weetall HH, Suzuki S (1975) Immobilized enzyme technology – research and applications. Plenum, New York, 321 pp

    Book  Google Scholar 

  • Weigand TA, Zuber J (2006) Precoat filtration: not a dead end street-introduction of a new generation of candle filters. Tech Q Master Brew Assoc Am 43:36–41

    Google Scholar 

  • Weiss A, Schönberger C, Mitter W, Biendl M, Back W, Krottenthaler M (2002) Sensdory and analytical characterisation of reduced isomerised hop extracts and use in beer. J Inst Brew 108:236–242

    Article  CAS  Google Scholar 

  • Weyh H, Hagen W (1998) Quo vadis hops? Changing beer taste at home and in America. Brauwelt 138:248–249

    Google Scholar 

  • Williams LA (1982) Heat release in alcoholic fermentations: A critical reappraisal. Am J Enol Vitic 33:149–153

    CAS  Google Scholar 

  • Yokotsuka K, Yajima M, Matsudo T (1997) Production of bottle-fermented sparkling wine using yeast immobilized in double-layer gel beads or strands. Am J Enol Vitic 48:471–481

    CAS  Google Scholar 

  • Yoshida S, Imoto J, Minato T, Oouchi R, Sugihara M, Imai T, Ishiguro T, Mizutani M, Tomita M, Soga T, Yoshimoto H (2008) Development of bottom-fermenting Saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Appl Environ Microbiol 74:2787–2796

    Article  CAS  Google Scholar 

  • Yoshizawa K, Ishikawa T (1985). Changes in lipids during sake brewing and their effects on the formation of aroma esters. Hakkokogaku 63:161–173

    CAS  Google Scholar 

  • Zhang Y, Wang ZY, He XP, Zhang BR (2008) New industrial brewing yeast strains with ILV2 disruption and LSD1 expression. Int J Food Microbiol 123:18–24

    Article  CAS  Google Scholar 

  • Zamkow M, Schultze B, Burberg F, Back W, Arendt EK, Kreisz S, Krahl M, Gastl M (2009) Triticale malt (x Triticosecale Wittmark) a raw material for brewing – using response surface methodology to optimise malting conditions. Brew Sci 62:44–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Hartmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmeier, W., Reiss, M. (2011). Production of Beer and Wine. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_3

Download citation

Publish with us

Policies and ethics