Abstract
We consider dynamical gene-environment networks under ellipsoidal uncertainty and discuss the corresponding set-theoretic regression models. Clustering techniques are applied for an identification of functionally related groups of genes and environmental factors. Clusters can partially overlap as single genes possibly regulate multiple groups of data items. The uncertain states of cluster elements are represented in terms of ellipsoids referring to stochastic dependencies between the multivariate data variables. The time-dependent behaviour of the system variables and clusters is determined by a regulatory system with (affine-) linear coupling rules. Explicit representations of the uncertain multivariate future states of the system are calculated by ellipsoidal calculus. Various set-theoretic regression models are introduced in order to estimate the unknown system parameters. Hereby, we extend our Ellipsoidal Operations Research previously introduced for gene-environment networks of strictly disjoint clusters to possibly overlapping clusters. We analyze the corresponding optimization problems, in particular in view of their solvability by interior point methods and semidefinite programming and we conclude with a discussion of structural frontiers and future research challenges.
Keywords
- Genetic Cluster
- Regression Problem
- Interior Point Method
- Environmental Cluster
- Ellipsoidal Approximation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Alparslan Gök, S.Z.: Cooperative interval games. PhD Thesis, Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey (2009)
Alparslan Gök, S.Z., Branzei, R., Tijs, S.: Convex interval games. Preprint at IAM, Middle East Technical University, Ankara, Turkey, and Center for Economic Research, Tilburg University, The Netherlands (2008)
Alparslan Gök, S.Z., Branzei, R., Tijs, S.: Airport interval games and their Shapley value. Operations Research and Decisions, 2, 9–18 (2010)
Alparslan Gök, S.Z., Miquel, S., Tijs, S.: Cooperation under interval uncertainty. Math. Methods Oper. Res. 69, 99–109 (2009)
Alparslan Gök, S.Z., Weber, G.-W.: Cooperative games under ellipsoidal uncertainty. In: The Proceedings of PCO 2010, 3rd Global Conference on Power Control and Optimization, Gold Coast, Queensland, Australia, Feb 2–4, 2010
Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genome-wide expression data processing and modeling. PNAS. 97(18), 10101–10106 (2000)
Aster, A., Borchers, B., Thurber, C.: Parameter Estimation and Inverse Problems. Academic, Amsterdam (2004)
Bagirov, A.M., Yearwood, J.: A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. Eur. J. Oper. Res. 170(2), 578–596 (2006)
Barzily, Z., Volkovich, Z.V., Akteke-Öztürk, B., Weber, G.-W.: Cluster stability using minimal spanning tree. ISI Proceedings of 20th Mini-EURO Conference, Continuous Optimization and Knowledge-Based Technologies, pp. 248–252. Neringa, Lithuania, 20–23 May 2008
Benedetti, R.: Real algebraic and semi-algebraic sets. Hermann, Ed. des Sciences et des Arts, Paris (1990)
Ben-Tal, A.: Conic and robust optimization. Lecture notes (2002)Available athttp://iew3.technion.ac.il/Home/Users/morbt.phtml.
Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Springer, New York (1998)
Borenstein, E., Feldman, M.W.: Topological signatures of species interactions in metabolic networks. J. Comput. Biol. 16(2), 191–200 (2009). doi: 10.1089/cmb.2008.06TT
Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)
Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M., Haussler, D.: Knowledge-based analysis of microarray gene expression data by using support vector machines. PNAS 97(1), 262–267 (2000)
Büyükbebeci, E.: Comparison of MARS, CMARS and CART in predicting default probabilities for emerging markets. MSc. Term Project Report/Thesis in Financial Mathematics, at IAM, METU, Ankara, August 2009
Chipman, H., Tibshirani, R.: Hybrid hierarchical clustering with applications to microarray data. Biostatistics 7(2), 286–301 (2006)
Mol, C. De, Mosci, S., Traskine, M., Verri, A.: A Regularized Method for selecting nested groups of relevant genes from microarray data. J. Comput. Biol. 16(5), 677–690 (2009)
Defterli, Ö., Fügenschuh, A., Weber, G.-W.: New discretization and optimization techniques with results in the dynamics of gene-environment networks. In: The proceedings of PCO 2010, 3rd Global Conference on Power Control and Optimization, Gold Coast, Queensland, Australia, Feb 2–4, 2010 (ISBN: 978-983-44483-1-8)
Durieu, P., Walter, É., Polyak, B.: Multi-input multi-output ellipsoidal state bounding. J. Optim. Theory Appl. 111(2), 273–303 (2001)
Gebert, J., Lätsch, M., Quek, E.M.P., Weber, G.-W.: Analyzing and optimizing genetic network structure via path-finding. J. Comput. Technol. 9(3), 3–12 (2004)
Gökmen, A., Kayalgil, S., Weber, G.-W., Gökmen, I., Ecevit, M., Sürmeli, A., Bali, T., Ecevit, Y., Gökmen, H., DeTombe, D.J.: Balaban valley project: improving the quality of life in rural area in Turkey. Int. Sci. J. Methods Models Complex. 7(1) (2004)
Harris, J.R., Nystad, W., Magnus, P.: Using genes and environments to define asthma and related phenotypes: applications to multivariate data. Clin. Exp. Allergy 28(1), 43–45 (1998)
Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 607–616 (1996)
Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, New York (2001)
Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17(2), 126–136 (2001)
Hooper, S.D., Boué, S., Krause, R., Jensen, L.J., Mason, C.E., Ghanim, M., White, K.P., Furlong, E.E.M., Bork, P.: Identification of tightly regulated groups of genes during Drosophila melanogaster embryogenesis. Mol. Syst. Biol. 3, 72 (2007)
Işcanoğlu, A., Weber, G.-W., Taylan, P.: Predicting default probabilities with generalized additive models for emerging markets. Invited lecture, Graduate Summer School on New Advances in Statistics, METU (2007)
Kropat, E., Pickl, S., Rössler, A., Weber, G.-W.: On theoretical and practical relations between discrete optimization and nonlinear optimization. In: Special issue Colloquy Optimization – Structure and Stability of Dynamical Systems (at the occasion of the colloquy with the same name, Cologne, October 2000) of Journal of Computational Technologies, vol. 7, pp. 27–62 (2002)
Kropat, E., Weber, G.-W., Akteke-Öztürk, B.: Eco-finance networks under uncertainty. In: Herskovits, J., Canelas, A., Cortes, H., Aroztegui, M. (eds.) Proceedings of the International Conference on Engineering Optimization (ISBN 978857650156-5, CD), EngOpt 2008, Rio de Janeiro, Brazil (2008)
Kropat, E., Weber, G.-W., Rückmann, J.-J.: Regression analysis for clusters in gene-environment networks based on ellipsoidal calculus and optimization. Preprint 157 at IAM, METU, Ankara, Turkey (2009). Submitted to Dynamics of Continuous, Discrete and Impulsive Systems
Kropat, E., Weber, G.-W., Pedamallu, C.S.: Regulatory networks under ellipsoidal uncertainty – optimization theory and dynamical systems. Preprint at IAM, METU, Ankara, Turkey, 2009. Submitted to SIAM Journal on Optimization
Kurzhanski, A.B., Vályi, I.: Ellipsoidal Calculus for Estimation and Control. Birkhäuser, Boston (1997)
Kurzhanski, A.A., Varaiya, P.: Ellipsoidal Toolbox Manual. EECS Department, University of California, Berkeley (2008)
Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data. J. Am. Stat. Assoc. 99, 67–81 (2004)
Mahony, S., McInerney, J.O., Smith, T.J., Golden, A.: Gene prediction using the self-organizing map: automatic generation of multiple gene models. BMC Bioinform 5, 23 (2004). doi:10.1186/1471-2105-5-23
Marvanova, M., Toronen, P., Storvik, M., Lakso, M., Castren, E., Wong, G.: Synexpression analysis of ESTs in the rat brain reveals distinct patterns and potential drug targets. Mol. Brain Res. 104(2), 176–183 (2002)
Mattes, W.B., Pettit, S.D., Sansone, S.A., Bushel, P.R., Waters, M.D.: Database development in toxicogenomics: issues and efforts. Environ. Health Perspect. 112(4), 495–505 (2004)
Nemirovski, A.: Five lectures on modern convex optimization. C.O.R.E. Summer School on Modern Convex Optimization (2002). Available at http://iew3.technion.ac.il/Labs/Opt/opt/LN/Final.pdf
Nemirovski, A.: Lectures on modern convex optimization, Israel Institute of Technology (2002). Available at http://iew3.technion.ac.il/Labs/Opt/opt/LN/Final.pdf
Nemirovski, A.: Interior point polynomial time algorithms in convex programming. Lecture Notes (2004). Available at https://itweb.isye.gatech.edu
Nemirovski, A.: Modern convex optimization. Lecture at PASCAL Workshop, Thurnau, Germany, March 16–18 (2005)
Nesterov, Y.E., Nemirovskii, A.S.: Interior Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)
Nikkila, J., Törönen, P., Kaski, S., Venna, J., Castrén, E., Wong, G.: Analysis and visualization of gene expression data using self-organizing maps. Neural Netw. 15(8–9), 953–966 (2002)
Partner, M., Kashtan, N., Alon, U.: Environmental variability and modularity of bacterial metabolic network. BMC Evol. Biol. 7, 169 (2007). doi:10.1186/1471-2148-7-169
Pickl, S.: Der τ-value als Kontrollparameter – Modellierung und Analyse eines Joint-Implementation Programmes mithilfe der dynamischen kooperativen Spieltheorie und der diskreten Optimierung. Thesis, Darmstadt University of Technology, Department of Mathematics (1998)
Quackenbush, J.: Computational analysis of microarray data. Nat. Rev. Genet. 2, 418–427 (2001)
Rivolta, M.N., Halsall, A., Johnson, C.M., Tones, M.A., Holley, M.C.: Transcript profiling of functionally related groups of genes during conditional differentiation of a mammalian cochlear hair cell line. Genome Res. 12, 1091–1099 (2002)
Ros, L., Sabater, A., Thomas, F.: An ellipsoidal calculus based on propagation and fusion. IEEE Trans. Syst. Man Cybern. B Cybern. 32(4), 430–442 (2002)
She, Y.: Sparse regression with exact clustering. PhD Thesis, Department of Statistics, Stanford University, USA (2008)
Shapiro, A., Dentcheva, D., Ruszczy\acute{{ n}}ski, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009, in press)
Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. PNAS 96, (6), 2907–2912 (1999)
Taştan, M.: Analysis and prediction of gene expression patterns by dynamical systems, and by a combinatorial algorithm. MSc Thesis, Institute of Applied Mathematics, METU, Turkey (2005)
Taştan, M., Ergenç, T., Pickl, S.W., Weber, G.-W.: Stability analysis of gene expression patterns by dynamical systems and a combinatorial algorithm. In: HIBIT – Proceedings of International Symposium on Health Informatics and Bioinformatics, Turkey ’05, pp. 67–75. Antalya, Turkey, 2005
Taştan, M., Pickl, S.W., Weber, G.-W.: Mathematical modeling and stability analysis of gene-expression patterns in an extended space and with Runge-Kutta discretization. In: Proceedings of Operations Research 2005, pp. 443–450. Springer, Bremen, Sept 2005
Taylan, P., Weber, G.-W., Beck, A.: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and techology. In: Burachik, B., Yang, X. (guest eds.) The special issue in honour of Prof. Dr. Alexander Rubinov, Optimization, vol. 56, 5–6, 1–24 (2007)
Thomas, B., Raju, G., Sonam, W.: A modified fuzzy c-means algorithm for natural data exploration. World Acad. Sci. Eng. Technol. 49 (2009)
Uğur, Ö., Pickl, S.W., Weber, G.-W., Wünschiers, R.: Operational research meets biology: An algorithmic approach to analyze genetic networks and biological energy production. Preprint no. 50, Institute of Applied Mathematics, METU, 2006. Submitted for the special issue of Optimization at the occasion of the 5th Ballarat Workshop on Global and Non-Smooth Optimization: Theory, Methods, and Applications (2006)
Uğur, Ö., Pickl, S.W., Weber, G.-W., Wünschiers, R.: An algorithmic approach to analyze genetic networks and biological energy production: an introduction and contribution where OR meets biology. Optimization 58(1), 1–22 (2009)
Uğur, Ö., Weber, G.-W.: Optimization and dynamics of gene-environment networks with intervals. In the special issue at the occasion of the 5th Ballarat Workshop on Global and Non-Smooth Optimization: Theory, Methods and Applications, Nov 28–30, 2006, of J. Ind. Manag. Optim., vol. 3(2), 357–379 (2007)
Vazhentsev, A.Y.: On internal ellipsoidal approximations for problems of control synthesis with bounded coordinates. J. Comput. Syst. Sci. Int. 39(3) (2000)
Vázques, F.G., Rückmann, J.-J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. J. Comput. Appl. Math. 217(2), 394–419 (2008)
Wall, M., Rechtsteiner, A., Rocha, L.: Singular Value Decomposition and Principal Component Analysis. In: Berrar, D.P., Dubitzky, W., Granzow, M. (eds.) A Practical Approach to Microarray Data Analysis, pp. 91–109, Kluwer, Norwell, MA (2003)
Weber, G.-W.: Charakterisierung struktureller Stabilität in der nichtlinearen Optimierung. In: Bock, H.H., Jongen, H.T., Plesken, W.: (eds.) Aachener Beiträge zur Mathematik 5. Augustinus publishing house (now: Mainz publishing house) Aachen (1992)
Weber, G.-W.: Minimization of a max-type function: Characterization of structural stability. In: Guddat, J., Jongen, H.Th., Kummer, B., No\check{{ z}}i\check{{ c}}ka, F. (eds.) Parametric Optimization and Related Topics III, pp. 519–538. Peter Lang publishing house, Frankfurt a.M., Bern, New York (1993)
Weber, G.-W.: Generalized semi-infinite optimization and related topics. In: Hofmannn, K.H., Wille, R. (eds.) Research and Exposition in Mathematics, vol. 29, Heldermann Publishing House, Lemgo (2003)
Weber, G.-W., Alparslan-Gök, S.-Z., Defterli, O., Kropat, E.: Modeling, Inference and Optimization of Regulatory Networks Based on Time Series Data. Preprint at Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey, submitted to European Journal of Operational Research (EJOR)
Weber, G.-W., Alparslan-Gök, S.Z., Dikmen, N.: Environmental and life sciences: gene-environment networks – optimization, games and control – a survey on recent achievements. In: DeTombe, D. (guest ed.) Invited paper, in the special issue of Journal of Organisational Transformation and Social Change, vol. 5(3), pp. 197–233 (2008)
Weber, G.-W., Alparslan-Gök, S.Z., Söyler, B.: A new mathematical approach in environmental and life sciences: gene-environment networks and their dynamics. Environ. Model. Assess. 14(2), 267-Ű288 (2009)
Weber, G.-W., Batmaz, I., Köksal, G., Taylan, P., Yerlikaya-Özkur, F.: CMARS: A new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimisation. Preprint at IAM, METU, Ankara
Weber, G.-W., Kropat, E., Akteke-Öztürk, B., Görgülü, Z.-K.: A survey on OR and mathematical methods applied on gene-environment networks. Special Issue on Innovative Approaches for Decision Analysis in Energy, Health, and Life Sciences of Central European Journal of Operations Research (CEJOR) at the occasion of EURO XXII 2007 (Prague, Czech Republic, July 8–11, 2007), vol. 17(3), 315–341 (2009)
Weber, G.-W., Kropat, E., Tezel, A., Belen, S.: Optimization applied on regulatory and eco-finance networks – survey and new developments. In: Fukushima, M. et al. (guest eds.) Pac. J. Optim., vol. 6(3), Special Issue in memory of Professor Alexander Rubinov (2011, in press)
Weber, G.-W., Özögür-Akyüz, S., Kropat, E.: A review on data mining and continuous optimization applications in computational biology and medicine. Embryo Today, Birth Defects Research (Part C), 87, 165–181 (2009)
Weber, G.-W., Taylan, P., Alparslan-Gök, S.-Z., Özöğür, S., Akteke-Öztürk, B.: Optimization of gene-environment networks in the presence of errors and uncertainty with Chebychev approximation. TOP, the Operational Research journal of SEIO (Spanish Statistics and Operations Research Society) vol. 16(2), 284–318 (2008)
Weber, G.-W., Tezel, A.: On generalized semi-infinite optimization of genetic networks. TOP 15(1), 65–77 (2007)
Weber, G.-W., Tezel, A., Taylan, P., Soyler, A., Çetin, M.: Mathematical contributions to dynamics and optimization of gene-environment networks. In: Pallaschke, D., Stein, O. (guest eds.) Special Issue: In Celebration of Prof. Dr. Dr. Hubertus Th. Jongen’s 60th Birthday, of Optimization, vol. 57(2), pp. 353–377 (2008)
Weber, G.-W., Uğur, Ö., Taylan, P., Tezel, A.: On optimization, dynamics and uncertainty: a tutorial for gene-environment networks. In: the Special Issue Networks in Computational Biology of Discrete Appl. Math., vol. 157(10), pp. 2494–2513 (2009)
Yerlikaya, F.: A new contribution to nonlinear robust regression and classification with MARS and its applications to data mining for quality control in manufacturing. Thesis, Middle East Technical University, Ankara, Turkey (2008)
Yeung, K.Y., Ruzzo, W.L.: Principal component analysis for clustering gene expression data. Bioinformatics 17(9), 763–774 (2001)
Yılmaz, F.B.: A mathematical modeling and approximation of gene expression patterns by linear and quadratic regulatory relations and analysis of gene networks. MSc Thesis, Institute of Applied Mathematics, METU, Ankara, Turkey (2004)
Yılmaz, F.B., Öktem, H., Weber, G.-W.: Mathematical modeling and approximation of gene expression patterns and gene networks. In: Fleuren, F., den Hertog, D., Kort, P. (eds.) Operations Research Proceedings, pp. 280–287 (2005)
Zhang, A.: Advanced Analysis of Gene Expression Microarray Data. World Scientific Pub. Co. Ltd., Singapore (2006)
Acknowledgements
The authors express their cordial gratitude to Professor Alberto Pinto for inviting us to contribute with our chapter to this distinguished book in honour of Prof. Dr. Mauricio Peixoto and Prof. Dr. David Rand.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kropat, E., Weber, GW., Belen, S. (2011). Dynamical Gene-Environment Networks Under Ellipsoidal Uncertainty: Set-Theoretic Regression Analysis Based on Ellipsoidal OR. In: Peixoto, M., Pinto, A., Rand, D. (eds) Dynamics, Games and Science I. Springer Proceedings in Mathematics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11456-4_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-11456-4_35
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11455-7
Online ISBN: 978-3-642-11456-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)