Dynamics, Games and Science I pp 169-181 | Cite as
Computability and Dynamical Systems
- 1 Citations
- 1.3k Downloads
Abstract
In this paper we explore results that establish a link between dynamical systems and computability theory (not numerical analysis). In the last few decades, computers have increasingly been used as simulation tools for gaining insight into dynamical behavior. However, due to the presence of errors inherent in such numerical simulations, with few exceptions, computers have not been used for the nobler task of proving mathematical results. Nevertheless, there have been some recent developments in the latter direction. Here we introduce some of the ideas and techniques used so far, and suggest some lines of research for further work on this fascinating topic.
Keywords
Turing Machine Hyperbolic System Strange Attractor Computable Function Reachability ProblemPreview
Unable to display preview. Download preview PDF.
Notes
cknowledgements
J. Buescu was partially supported by Fundação para a Ciência e a Tecnologia, Financiamento Base 2009 – ISFL/1/209. D. Graça was partially supported by Fundação para a Ciência e a Tecnologia and EU FEDER POCTI/POCI via SQIG – Instituto de Telecomunicações. DG was also attributed a Taft Research Collaboration grant which made possible a research visit to23pc]Please update references “[11, 16, 22, 23, 24]”. U. Cincinnati. N. Zhong was partially supported by the 2009 Taft Summer Research Fellowship.
References
- 1.Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hierarchy. J. Comput. System Sci. 57(3), 389–398 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
- 2.Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoret. Comput. Sci. 138, 35–65 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Blondel, V.D., Bournez, O., Koiran, P., Tsitsiklis, J.N.: The stability of saturated linear dynamical systems is undecidable. J. Comput. System Sci. 62, 442–462 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
- 4.Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer (1998)Google Scholar
- 5.Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Am. Math. Soc. 21(1), 1–46 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoret. Comput. Sci. 210(1), 21–71 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
- 7.Bournez, O., Campagnolo, M.L., Gracía, D.S., Hainry, E.: Polynomial differential equations compute all real computable functions on computable compact intervals. J. Complexity 23(3), 317–335 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
- 8.Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoret. Comput. Sci. 138(1), 67–100 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
- 9.Braverman, M., Cook, S.: Computing over the reals: foundations for scientific computing. Notices Amer. Math. Soc. 53(3), 318–329 (2006)zbMATHMathSciNetGoogle Scholar
- 10.Braverman, M., Yampolsky, M.: Non-computable Julia sets. J. Am. Math. Soc. 19(3), 551– 0578 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
- 11.Buescu, J., Gracía, D., Zhong, N.: Computability and horseshoes. preprint (2009)Google Scholar
- 12.Collins, P.: Continuity and computability of reachable sets. Theor. Comput. Sci. 341, 162–195 (2005)CrossRefzbMATHGoogle Scholar
- 13.Collins, P.: Chaotic dynamics in hybrid systems. Nonlinear Dyn. Syst. Theory 8(2), 169–194 (2008)zbMATHMathSciNetGoogle Scholar
- 14.Collins, P.: Computability of controllers for discrete-time semicontinuous systems. In: Proc. 18th International Symposium on the Mathematical Theory of Networks and Systems (2008)Google Scholar
- 15.Collins, P.: The reach-and-evolve algorithm for reachability analysis of nonlinear dynamical systems. Electron. Notes Theor. Comput. Sci. 223, 87–102 (2008)CrossRefGoogle Scholar
- 16.Collins, P.: Controllability and falsification of hybrid systems. In Proc. European Control Conference, To appear (2009)Google Scholar
- 17.Collins, P., Gracía, D.S.: Effective computability of solutions of differential inclusions Ů the ten thousand monkeys approach. J. Universal Comput. Sci. 15(6), 1162–1185 (2009)zbMATHMathSciNetGoogle Scholar
- 18.Delvenne, J.C., Kurka, P., Blondel, V.: Decidability and universality in symbolic dynamical systems. Fund. Inform. 74(4), 463–490 (2006)zbMATHMathSciNetGoogle Scholar
- 19.Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A A400, 97–117 (1985)MathSciNetGoogle Scholar
- 20.Duffing, G.: Erzwungene Schwingungen bei Verĺanderlicher Eigenfrequenz. Vieweg Braunschweig (1918)Google Scholar
- 21.Galatolo, S., Hoyrup, M., Rojas, C.: Effective symbolic dynamics, random points, statistical behavior, complexity and entropy. Inform. Comput. (to appear)Google Scholar
- 22.Gracía, D., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Am. Math. Soc. 361(6), 2913–2927 (2009)CrossRefMathSciNetGoogle Scholar
- 23.Gracía, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential equations. Adv. Appl. Math. 40(3), 330–349 (2008)CrossRefMathSciNetGoogle Scholar
- 24.Gracía, D.S., Campagnolo, M.L., Buescu, J.: Computational bounds on polynomial differential equations. Appl. Math. Comput. 215(4), 1375–1385 (2009)CrossRefMathSciNetGoogle Scholar
- 25.Gracía, D.S., Zhong, N.: Computing domains of attraction for planar dynamics. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) 8th International Conference on Unconventional Computation (UC 2009), LNCS 5715, pp. 179–190. Springer (2009)Google Scholar
- 26.Hertling, P., Spandl, C.: Computability theoretic properties of the entropy of gap shifts. Fundam. Inf. 83, 141–157 (2008)zbMATHMathSciNetGoogle Scholar
- 27.Hertling, P., Spandl, C.: Shifts with decidable language and noncombustible entropy. Discrete Math. Theor. Comput. Sci. 10, 75–94 (2008)zbMATHMathSciNetGoogle Scholar
- 28.Hoyrup, M.: Dynamical systems: stability and simulability. Math. Structures Comput. Sci. 17, 247–259 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
- 29.Hoyrupa, M., Kolaka, A., Longo, G.: Computability and the morphological complexity of some dynamics on continuous domains. Theor. Comput. Sci. 398, 170–182 (2008)CrossRefGoogle Scholar
- 30.Hoyrupa, M., Rojas, C.: Computability of probability measures and martin-lf randomness over metric spaces. Inform. Comput. 207, 830–847 (2009)CrossRefGoogle Scholar
- 31.Ko, K.I.: Computational Complexity of Real Functions. Birkhĺauser (1991)Google Scholar
- 32.Koiran, P.: The topological entropy of iterated piecewise affine maps is uncomputable. Discrete Math. Theor. Comput. Sci. 4(2), 351–356 (2001)zbMATHGoogle Scholar
- 33.Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can simulate universal Turing machines. Theor. Comput. Sci. 210(1), 217–223 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
- 34.Lanford, O.E.: A computer-assisted proof of the feigenbaum conjectures. Bull. AMS 6, 427– 434 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
- 35.Legenstein, R., Maass, W.: What makes a computational system dynamically powerful? In: Haykin, S., Principe, J.C., Sejnowski, T., Mcwhirter, J. (eds.) New Directions in Statistical Signal Processing: From Systems to Brain, pp. 127–154. MIT (2007)Google Scholar
- 36.Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
- 37.Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica 35, 349–370 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
- 38.Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog computations. Neural Comput. 10(5), 1071–1095 (1998)CrossRefGoogle Scholar
- 39.Maass, W., Sontag, E.: Analog neural nets with gaussian or other common noise distributions cannot recognize arbitrary regular languages. Neural Comp. 11, 771–782 (1999)CrossRefGoogle Scholar
- 40.Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64(20), 2354–2357 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
- 41.Peixoto, M.: Structural stability on two-dimensional manifolds. Topology 1, 101–121 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
- 42.van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Review 1, 701–710, 754–762 (1920)Google Scholar
- 43.Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer (1989)Google Scholar
- 44.Pour-El, M.B., Zhong, N.: The wave equation with computable initial data whose unique solution is nowhere computable. Math. Logic Q. 43, 499–509 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
- 45.Rettinger, R., Weihrauch, K.: The computational complexity of some julia sets. In Proc. 35th Annual ACM Symposium on Theory of Computing, pp. 177–185. ACM (2003)Google Scholar
- 46.Rettinger, R.,Weihrauch, K., Zhong, N.: Topological complexity of blowup problems. J. Univers. Comput. Sci. 15(6), 1301–1316 (2009)zbMATHMathSciNetGoogle Scholar
- 47.Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)CrossRefGoogle Scholar
- 48.Shinbrot, T., Grebogi, C., Yorke, J.A., Ott, E.: Using small perturbations to control chaos. Nature 363, 411–417 (1993)CrossRefGoogle Scholar
- 49.Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Course Technology (2005)Google Scholar
- 50.Smale, S.: Structurally stable systems are not dense. Am. J. Math. 88, 491–496 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
- 51.Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)CrossRefMathSciNetGoogle Scholar
- 52.Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
- 53.Sontag, E.D.: Mathematical Control Theory, 2nd edn. Springer (1998)Google Scholar
- 54.Spandl, C.: Computing the topological entropy of shifts. Math. Log. Quart. 53(4-5), 493Ű510 (2007)Google Scholar
- 55.Spandl, C.: Computability of topological pressure for shifts of finite type with applications in statistical physics. Electr. Notes Theor. Comput. Sci. 202, 385–401 (2008)CrossRefMathSciNetGoogle Scholar
- 56.Tucker, W.: A rigorous ode solver and smales 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)zbMATHMathSciNetGoogle Scholar
- 57.Vidal, R., Schaffert, S., Shakernia, O., Lygeros, J., Sastry, S.: Decidable and semi-decidable controller synthesis for classes of discrete time hybrid systems. In Proc. 40th IEEE Conference on Decision and Control, pp. 1243–1248 (2001)Google Scholar
- 58.Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)Google Scholar
- 59.Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers beat the Turing machine? Proc. Lond. Math. Soc. 85(3), 312–332 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
- 60.Zabczyk, J.: Mathematical Control Theory: An Introduction. Birkhĺauser (1992)Google Scholar
- 61.Zhong, N.: Computational unsolvability of domain of attractions of nonlinear systems. Proc. Am. Math. Soc. 137, 2773–2783 (2009)CrossRefzbMATHGoogle Scholar