Skip to main content

Some Recent Results on Multi-temperature Mixture of Fluids

  • Chapter
Continuous Media with Microstructure

Abstract

We present a survey on some recent results concerning the different models of a mixture of compressible fluids. In particular we discuss the most realistic case of a mixture when each constituent has its own temperature (MT) and we first compare the solutions of this model with the one whit a unique common temperature (ST). In the case of Eulerian fluids it will be shown that the corresponding (ST) differential system is a principal subsystem of the (MT) one. Global behavior of smooth solutions for large time for both systems will also be discussed through the application of the Shizuta-Kawashima condition. Than we introduce the concept of the average temperature of mixture based upon the consideration that the internal energy of the mixture is the same as in the case of a single-temperature mixture. As a consequence, it is shown that the entropy of the mixture reaches a local maximum in equilibrium. Through the procedure of Maxwellian iteration a new constitutive equation for non-equilibrium temperatures of constituents is obtained in a classical limit, together with the Fick’s law for the diffusion flux. To justify the Maxwellian iteration, we present for dissipative fluids a possible approach of a classical theory of mixture with multi-temperature and we prove that the differences of temperatures between the constituents imply the existence of a new dynamical pressure even if the fluids have a zero bulk viscosity. in the case of the one-dimensional steady heat conduction between two walls, we have verified that the main effect of multi-temperature is that the average temperature is not a linear function of the distance as in the case of the ST theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Truesdell, C.: Rational Thermodynamics. McGraw-Hill, New York (1969)

    Google Scholar 

  2. Müller, I.: Arch. Ration. Mech. Anal.  28, 1 (1968)

    Google Scholar 

  3. Müller, I.: Thermodynamics. Pitman, London (1985)

    Google Scholar 

  4. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)

    MATH  Google Scholar 

  5. Hütter, K.: Continuum Methods of Physical Modeling. Springer, New York (2004)

    Google Scholar 

  6. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  7. Atkin, R.J., Craine, R.E.: Quart. J. Mech. Appl. Math.  29, 209 (1976)

    Google Scholar 

  8. Wilmanski, K.: Continuum Thermodynamics - Part I: Foundations. World Scientific, Singapore (2008)

    MATH  Google Scholar 

  9. Bose, T.K.: High Temperature Gas Dynamics. Springer, Berlin (2003)

    Google Scholar 

  10. Ruggeri, T.: Galilean Invariance and Entropy Principle for Systems of Balance Laws. The Structure of the Extended Thermodynamics. Contin. Mech. Thermodyn. 1, 3 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ruggeri, T., Simić, S.: On the Hyperbolic System of a Mixture of Eulerian Fluids: A Comparison Between Single- and Multi-Temperature Models. Math. Meth. Appl. Sci. 30, 827 (2007)

    Article  MATH  Google Scholar 

  12. Boillat, G.: Sur l’existence et la recherche d’équations de conservation supplémentaires pour les Systémes Hyperboliques. C.R. Acad. Sc. Paris 278A, 909 (1974)

    MathSciNet  Google Scholar 

  13. Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann. Inst. H. Poincaré 34A, 65–84 (1981)

    MathSciNet  Google Scholar 

  14. Boillat, G.: In CIME Course. In: Ruggeri, T. (ed.) Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, vol. 1640, pp. 103–152. Springer, Heidelberg (1995)

    Google Scholar 

  15. Friedrichs, K.O., Lax, P.D.: Systems of conservation laws with a convex extension. Proc. Nat. Acad. Sci. USA 68, 1686–1688 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  16. Godunov, S.K.: An interesting class of quasilinear systems. Sov. Math. 2, 947–948 (1961)

    MATH  Google Scholar 

  17. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2001)

    Google Scholar 

  18. Boillat, G., Ruggeri, T.: Hyperbolic Principal Subsystems: Entropy Convexity and Sub characteristic Conditions. Arch. Rat. Mech. Anal. 137, 305–320 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

    MATH  MathSciNet  Google Scholar 

  20. Hanouzet, B., Natalini, R.: Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Rat. Mech. Anal. 169, 89 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yong, W.A.: Entropy and global existence for hyperbolic balance laws. Arch. Rat. Mech. Anal. 172(2), 247 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ruggeri, T., Serre, D.: Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quart. Appl. Math. 62(1), 163–179 (2004)

    MATH  MathSciNet  Google Scholar 

  23. Lou, J., Ruggeri, T.: Acceleration waves and weaker Kawashima Shizuta condition. Rendiconti del Circolo Matematico di Palermo, Serie II 78, 187–200 (2006)

    MathSciNet  Google Scholar 

  24. Ruggeri, T.: Global Existence, Stability and Non Linear Wave Propagation in Binary Mixtures. In: Fergola, P., Capone, F., Gentile, M., Guerriero, G. (eds.) Proceedings of the International Meeting in honour of the Salvatore Rionero 70th Birthday, Napoli 2003, pp. 205–214. World Scientific, Singapore (2004)

    Chapter  Google Scholar 

  25. Ruggeri, T.: Some Recent Mathematical Results in Mixtures Theory of Euler Fluids. In: Monaco, R., Pennisi, S., Rionero, S., Ruggeri, T. (eds.) Proceedings WASCOM 2003, pp. 441–454. World Scientific, Singapore (2004)

    Google Scholar 

  26. Ikenberry, E., Truesdell, C.: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. J. Rational Mech. Anal. 5, 1 (1956)

    MathSciNet  Google Scholar 

  27. Ruggeri, T., Simić, S.: Mixture of Gases with Multi-temperature: Identification of a macroscopic average temperature. In: Proceedings Mathematical Physics Models and Engineering Sciences, Liguori Editore, Napoli, p. 455 (2008)

    Google Scholar 

  28. Ruggeri, T., Simić, S.: Average temperature and Maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009)

    Article  Google Scholar 

  29. Ruggeri, T., Simić, S.: Asymptotic Methods in Non Linear Wave Phenomena. In: Ruggeri, T., Sammartino, M. (eds.), p. 186. World Scientific, Singapore (2007)

    Google Scholar 

  30. Ruggeri, T., Lou, J.: Heat Conduction in multi-temperature mixtures of fluids: the role of the average temperature. Physics Letters A 373, 3052 (2009)

    Article  Google Scholar 

  31. Gouin, H., Ruggeri, T.: Identification of an average temperature and a dynamical pressure in a multi-temperature mixture of fluids. Phys. Rev. E 78, 01630 (2008)

    Article  Google Scholar 

  32. Eckart, C.: The Thermodynamics of Irreversible Processes. II. Fluid Mixtures. Phys. Rev. 58, 269 (1940)

    Article  MATH  Google Scholar 

  33. Onsager, L.: Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 37, 405 (1931); Reciprocal Relations in Irreversible Processes. II. Phys. Rev. 38, 2265 (1931)

    Article  MATH  Google Scholar 

  34. de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    Google Scholar 

  35. Gyarmati, I.: Non-Equilibrium Thermodynamics. Field Theory and Variational Principles. Springer, Berlin (1970)

    Google Scholar 

  36. de Groot, S.R., van Leeuwen, W.A., van Weert, C.G.: Relativistic Kinetic Theory. North-Holland, Amsterdam (1980)

    Google Scholar 

  37. Weinberg, S.: Entropy generation and the survival of protogalaxies in an expanding universe. Astrophys. J. 168, 175 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruggeri, T. (2010). Some Recent Results on Multi-temperature Mixture of Fluids. In: Albers, B. (eds) Continuous Media with Microstructure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11445-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11445-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11444-1

  • Online ISBN: 978-3-642-11445-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics