Skip to main content

The Importance of Sand in Earth Sciences

  • Chapter
Continuous Media with Microstructure

Abstract

Being a solid, sand can sustain shear stresses at rest but it can also undergo large plastic deformations without considerable change of its properties, behaving thus like a fluid. As a product of erosion, sand cannot be broken into parts because it is already a broken (‘clastic’) material. The pronounced deformability of sand gave rise not only to a large diversity of experimental investigations in Soil Mechanics but rendered also sand a model material for physical simulations of deformation processes of the earth crust: Sand box models serve to simulate not only folding and faulting processes of the earth crust but also processes of deformation of the earth mantle. There are also similarities between magma volcanism and the so-called sand boils or sand volcanoes that appear subsequent to liquefaction of water-saturated loose sand. The complex behaviour of sand is a permanent object of study not only by Soil Mechanics but —in recent time— also by Physics. In this paper, the ability of sand to model the behaviour of other geomaterials is elucidated and a new theoretical frame is presented to describe mathematically the behaviour of sand based on its asymptotic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Die visuelle Geschichte der Erde und des Lebens, Gerstenbergs visuelle Enzyklopädie. Gerstenberg Verlag, Hildesheim (1999)

    Google Scholar 

  2. Adam, J., Urai, J., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., van der Zee, W., Schmatz, J.: Shear localisation and strain distribution during tectonic faulting–new insights from granular-flow experiments and high-resolution optical image correlation techniques. Journal of Structural Geology 27(2), 283–301 (2005)

    Article  Google Scholar 

  3. Bang, D.P.V., Benedetto, H.D., Duttine, A., Ezaoui, A.: Viscous behaviour of dry sand. International Journal for Numerical and Analytical Methods in Geomechanics 31(15), 1631–1658 (2007)

    Article  Google Scholar 

  4. Bauer, E.: Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung. No. 130 in Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe (1992)

    Google Scholar 

  5. Byerlee, J.: Friction of rocks. Pure and Applied Geophysics 116, 615–626 (1978)

    Article  Google Scholar 

  6. Cloos, H.: Hebung – Spaltung – Vulkanismus. Geologische Rundschau - XXX - Zwischenheft 4A (1939)

    Google Scholar 

  7. Dworschak, M.: Magie des schlauen Sandes. Der SPIEGEL 6, 126 (2009)

    Google Scholar 

  8. Ghionna, V.N., Porcino, D.: Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering 132(2), 194–202 (2006)

    Article  Google Scholar 

  9. Goldscheider, M.: Grenzbedingung und Fließregel von Sand. Mech. Res. Comm. 3, 463–468 (1976)

    Article  Google Scholar 

  10. Housner, G.: The mechanisms of sandblows. Bulletin of the Seismological Society of America 48, 155–161 (1958)

    Google Scholar 

  11. Jefferies, M.: Plastic work and isotropic softening in unloading. Géotechnique 47, 1037–1042 (1997)

    Article  Google Scholar 

  12. Jefferies, M., Been, K.: Implications for critical state theory from isotropic compression of sand. Géotechnique 50(4), 419–429 (2000)

    Article  Google Scholar 

  13. Kolymbas, D.: A rate-dependent constitutive equation for soils. Mech. Res. Comm. 4, 367–372 (1977)

    Article  Google Scholar 

  14. Kolymbas, D.: Computer-aided design of constitutive laws. Int. J. Numer. Anal. Methods Geomech. 15, 593–604 (1991)

    Article  MATH  Google Scholar 

  15. Kolymbas, D.: An outline of hypoplasticity. Archive of Applied Mechanics 61, 143–151 (1991)

    MATH  Google Scholar 

  16. Kolymbas, D.: Introduction to hypoplasticity. In: Advances in Geotechnical Engineering and Tunnelling, vol. 1. Balkema, Rotterdam (2000)

    Google Scholar 

  17. Kuntsche, K.: Materialverhalten von wassergesättigten Tonen bei ebenen und zyklischen Verformungen. No. 91 in Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe (1982)

    Google Scholar 

  18. Kuribayashi, E., Tatsuoka, F.: History of earthquake-induced soil liquefaction in Japan. No. 38 in Bulletin of Public Works Research Institute (1977)

    Google Scholar 

  19. McKenzie, D.: The generation and compaction of partially molten rock. Journal of Petrology 25(3), 713–765 (1984)

    Google Scholar 

  20. Morsch, O.: Die Physik der Körner. Neue Züricher Zeitung (13.02.2008)

    Google Scholar 

  21. Muir Wood, D.: The magic of sands — the 20th Bjerrum Lecture presented in Oslo, 25 November 2005. Can. Geotech. J. 44, 1329–1350 (2007)

    Article  Google Scholar 

  22. Nübel, K.: Experimental and Numerical Investigation of Shear Localisation in Granular Material. No. 159 in Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe (2002)

    Google Scholar 

  23. Palmer, A., Pearce, J.: Plasticity theory without yield surface. In: Palmer, A. (ed.) Symposium on the Role of Plasticity in Soil Mechanics, Cambridge (1973)

    Google Scholar 

  24. Pestana, J., Whittle, A.: Compression model for cohesionless soils. Géotechnique 45(4), 611–631 (1995)

    Article  Google Scholar 

  25. Ramberg, H.: Gravity, deformation and the earth’s crust. Academic Press, London (1967)

    Google Scholar 

  26. Revuzhenko, A.: Mechanics of Granular Media. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  27. Sokoutis, D., Corti, G., Bonini, M., Brun, J., Cloetingh, S., Mauduit, T., Manetti, P.: Modelling the extension of heterogeneous hot lithosphere. Tectonophysics 444, 63–79 (2007)

    Article  Google Scholar 

  28. Topolnicki, M.: Observed stress-strain behaviour of remoulded saturated clay and examination of two constitutive models. No. 107 in Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe (1987)

    Google Scholar 

  29. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 2nd edn. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  30. Twiss, R., Moores, E.: Structural Geology. W.H. Freeman and Company, New York (1992)

    Google Scholar 

  31. Verdugo, R., Ishihara, K.: The steady state of sandy soils. Soils and Foundations 2, 81–91 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolymbas, D. (2010). The Importance of Sand in Earth Sciences. In: Albers, B. (eds) Continuous Media with Microstructure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11445-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11445-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11444-1

  • Online ISBN: 978-3-642-11445-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics