Skip to main content

A Simple Algorithm for Approximate Partial Point Set Pattern Matching under Rigid Motion

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5942))

Abstract

This paper deals with the problem of approximate point set pattern matching in 2D. Given a set P of n points, called sample set, and a query set Q of k points (k ≤ n), the problem is to find a match of Q with a subset of P under rigid motion (rotation and/or translation) transformation such that each point in Q lies in the ε-neighborhood of a point in P. The ε-neighborhood region of a point p i  ∈ P is an axis-parallel square having each side of length ε and p i at its centroid. We assume that the point set is well-seperated in the sense that for a given ε> 0, each pair of points p, p′ ∈ P satisfy at least one of the following two conditions (i) |x(p) − x(p′)| ≥ ε, and (ii) |y(p) − y(p′)| ≥ 3ε, and we propose an algorithm for the approximate matching that can find a match (if it exists) under rigid motion in O(n 2 k 2(klogk + logn)) time. If only translation is considered then the existence of a match can be tested in O(n k 2 logn) time. The salient feature of our algorithm for the rigid motion and translation is that it avoids the use of intersection of high degree curves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T.: On determining the congruence of point sets in d dimensions. Computational Geometry: Theory and Applications 9, 247–256 (1998)

    MATH  MathSciNet  Google Scholar 

  2. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity and symmetries of geometric objects. Discrete Computational Geometry 3, 237–256 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Handbook of Computational Geometry, pp. 121–153. Elsevier Science Publishers B.V. North-Holland, Amsterdam (1999)

    Google Scholar 

  4. Arkin, E.M., Kedem, K., Mitchell, J.S.B., Sprinzak, J., Werman, M.: Matching points into pairwise-disjoint noise regions: combinatorial bounds and algorithms. ORSA Journal on Computing 4, 375–386 (1992)

    MATH  Google Scholar 

  5. Brass, P., Knauer, C.: Testing the congruence of d-dimensional point sets. Int. J. Computational Geometry and Applications 12, 115–124 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cabello, S., Giannopoulos, P., Knauer, C.: On the parameterized complexity of d-dimensional point set pattern matching. Information Processing Letters 105, 73–77 (2008)

    Article  MathSciNet  Google Scholar 

  7. Chew, L.P., Goodrich, M.T., Huttenlocher, D.P., Kedem, K., Kleinberg, J.M., Kravets, D.: Geometric pattern matching under euclidean motion. Computational Geometry: Theory and Applications 7, 113–124 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Efrat, A., Itai, A.: Improvements on bottleneck matching and related problems using geometry. In: Proc. 12th ACM Symposium on Computational Geometry, pp. 301–310. ACM, New York (1996)

    Google Scholar 

  9. Gavrilov, M., Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric pattern matching: a performance study. In: Proc. 15th ACM Symposium on Computational Geometry, pp. 79–85. ACM, New York (1999)

    Google Scholar 

  10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, NY (1980)

    MATH  Google Scholar 

  11. Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Approximate geometric pattern matching under rigid motions. IEEE Trans. PAMI 21(4), 371–379 (1999)

    Google Scholar 

  12. Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congruence. Computational Geometry: Theory and Applications 4(3), 137–156 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Imai, K., Sumino, S., Imai, H.: Minimax geometric fitting of two corresponding sets of points. In: Proc. 5th ACM Symposium on Computational Geometry, pp. 266–275. ACM, New York (1989)

    Google Scholar 

  14. Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric matching under noise: combinatorial bounds and algorithms. In: Proc. 10th SIAM-ACM Symposium on Discrete Algorithms, pp. 457–465. ACM-SIAM, New York (1999)

    Google Scholar 

  15. Irani, S., Raghavan, P.: Combinatorial and experimental results for randomized point matching algorithms. In: Proc. 12th ACM Symposium on Computational Geometry, pp. 68–77. ACM, New York (1996)

    Google Scholar 

  16. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, NY (2003)

    MATH  Google Scholar 

  17. Mount, D.M., Netanyahu, N.S., Moigne, J.L.: Efficient algorithms for robust feature matching. Pattern Recognition 32, 17–38 (1999)

    Article  Google Scholar 

  18. Rezende, P.J., Lee, D.T.: Point set pattern matching in d-dimensions. Algorithmica 13, 387–404 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, NY (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bishnu, A., Das, S., Nandy, S.C., Bhattacharya, B.B. (2010). A Simple Algorithm for Approximate Partial Point Set Pattern Matching under Rigid Motion. In: Rahman, M.S., Fujita, S. (eds) WALCOM: Algorithms and Computation. WALCOM 2010. Lecture Notes in Computer Science, vol 5942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11440-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11440-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11439-7

  • Online ISBN: 978-3-642-11440-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics