Skip to main content

Nanoscale Chemistry of Uranyl Selenates

  • Chapter
  • First Online:
Actinide Nanoparticle Research

Abstract

Due to their high solubility and ability to form crystals of good quality, uranyl selenates can be considered as a kind of model systems for studies of at least some of the nanoscale processes occurring in actinide-bearing natural and technological systems. Uranyl selenates display an exceptional structural diversity that can be studied using topological and computational methods such as graph theory and cellular automata. This allows to suggest models of nanoscale self-assembly that occurs during crystallization of uranyl selenates, which is most likely based upon successive condensation of cyclic tetramers. The most interesting feature is the ability of uranyl selenates to form nanotubular structures of at least two types. In organically templated systems, the formation of nanoscale composites and molecular control upon structural architecture is governed by the delicate balance of hydrophilic/hydrophobic interactions of organic molecules that results in the formation of nanoscale supramolecular aggregates and the interactions of these aggregates with inorganic complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns PC, Kubatko KA, Sigmon G, Fryer BJ, Gagnon JE, Antonio MR, Soderholm L (2005) Actinyl peroxide nanospheres. Angew Chem Int Ed 44:2135–2139

    Article  CAS  Google Scholar 

  2. Forbes TZ, McAlpin JG, Murphy R, Burns PC (2008) Metal-oxygen isopolyhedra assembled into fullerene topologies. Angew Chem Int Ed 47:2824–2827

    Article  CAS  Google Scholar 

  3. Sigmon GE, Ling J, Unruh DK, Moore-Shay L, Ward M, Weaver B, Burns PC (2009a) Uranyl-peroxide interactions favor nano-cluster self-assembly. J Am Chem Soc 131:16648–16649

    Article  CAS  Google Scholar 

  4. Sigmon GE, Unruh DK, Ling J, Weaver B, Ward M, Pressprich L, Simonetti A, Burns PC (2009b) Symmetry vs. minimal pentagonal adjacencies in uranium-based polyoxometalate fullerene topologies. Angew Chem Int Ed 48:2737–2740

    Article  CAS  Google Scholar 

  5. Soderholm L, Almond PM, Skanthakumar S, Wilson RE, Burns PC (2008) The structure of a 38-plutonium oxide nanocluster: [Pu38O56Cl54(H2O)8]14−. Angew Chem Int Ed 47:298–302

    Article  CAS  Google Scholar 

  6. Krivovichev SV, Kahlenberg V, Kaindl R, Mersdorf E, Tananaev IG, Myasoedov BF (2005) Nanoscale tubules in uranyl selenates. Angew Chem Int Ed 44:1134–1136

    Article  CAS  Google Scholar 

  7. Krivovichev SV, Kahlenberg V, Tananaev IG, Kaindl R, Mersdorf E, Myasoedov BF (2005) Highly porous uranyl selenate nanotubules. J Am Chem Soc 127:1072–1073

    Article  CAS  Google Scholar 

  8. Krivovichev SV, Tananaev IG, Kahlenberg V, Kaindl R, Myasoedov BF (2005) Synthesis, structure, and properties of inorganic nanotubes based on uranyl selenates. Radiochemistry 47:525–536

    Article  CAS  Google Scholar 

  9. Alekseev EV, Krivovichev SV, Depmeier W (2008) A crown ether as template for microporous and nanostructured uranium compounds. Angew Chem Int Ed 47:549–551

    Article  CAS  Google Scholar 

  10. Nocton G, Burdet F, Pécaut J, Mazzanti M (2007) Self-assembly of polyoxo clusters and extended frameworks by controlled hydrolysis of low-valent uranium. Angew Chem Intl Ed 46:7574–7578

    Article  CAS  Google Scholar 

  11. Thuéry P (2008) Two uranyl-organic frameworks with formic acid. A novel example of a uranyl-based nanotubular assemblage. Inorg Chem Commun 11:616–620

    Article  Google Scholar 

  12. Thuéry P (2009) A nanosized uranyl camphorate cage and its use as a building unit in a metal – organic framework. Cryst Growth Des 9:4592–4594

    Article  Google Scholar 

  13. Krivovichev SV, Burns PC (2007) Actinide compounds containing hexavalent cations of the VI group elements (S, Se, Mo, Cr, W). In: Krivovichev SV, Burns PC, Tananaev IG (eds) Structural Chemistry of Inorganic Actinide Compounds. Elsevier, Amsterdam, pp. 95–182.

    Chapter  Google Scholar 

  14. Locock AJ (2007) Crystal chemistry of actinide phosphates and arsenates. In: Krivovichev SV, Burns PC, Tananaev IG (eds) Structural Chemistry of Inorganic Actinide Compounds. Elsevier, Amsterdam, pp. 217–278.

    Chapter  Google Scholar 

  15. Krivovichev SV, Kahlenberg V (2004) Synthesis and crystal structures of α- and β-Mg2[(UO2)3(SeO4)5](H2O)16. Z Anorg Allg Chem 630:2736–2742

    Article  CAS  Google Scholar 

  16. Krivovichev SV, Kahlenberg V (2005) Low-dimensional structural units in amine-templated uranyl oxoselenates(VI): Synthesis and crystal structures of [C3H12N2][(UO2)(SeO4)2(H2O)2]-(H2O). Z Anorg Allg Chem 631:2352–2357

    Article  CAS  Google Scholar 

  17. Krivovichev SV, Kahlenberg V (2005) Crystal structure of (H3O)6[(UO2)5(SeO4)8(H2O)5]-(H2O)5. Radiochemistry 47:456–459

    Article  CAS  Google Scholar 

  18. Krivovichev SV, Kahlenberg V (2005) Crystal structure of (H3O)2[(UO2)2(SeO4)3(H2O)2]-(H2O)3.5. Radiochemistry 47:452–455

    Article  CAS  Google Scholar 

  19. Krivovichev SV, Kahlenberg V (2005) Synthesis and crystal structures of M2[(UO2)3(SeO4)5](H2O)16 (M = Co, Zn). J Alloys Compd 395:41–47

    Article  CAS  Google Scholar 

  20. Krivovichev SV, Kahlenberg V (2005) Preparation and crystal structures of M[(UO2)(SeO4)2(H2O)](H2O)4 (M = Mg, Zn). Z Naturforsch 60b:538–542

    Google Scholar 

  21. Krivovichev SV, Kahlenberg V (2005) Structural diversity of sheets in rubidium uranyl oxoselenates: Synthesis and crystal structures of Rb2[(UO2)(SeO4)2(H2O)](H2O), Rb2[(UO2)2(SeO4)3(H2O)2](H2O) and Rb4[(UO2)3(SeO4)5(H2O)]. Z Anorg Allg Chem 631:739–744

    Article  CAS  Google Scholar 

  22. Krivovichev SV, Kahlenberg V (2005) Synthesis and crystal structure of Zn2[(UO2)3(SeO4)5](H2O)17. J Alloys Compd 389:55–60

    Article  CAS  Google Scholar 

  23. Krivovichev SV, Kahlenberg V, Avdontseva EY, Mersdorf E, Kaindl R (2005) Self-assembly of protonated 1,12-dodecanediamine molecules and strongly undulated uranyl selenate sheets in the structure of amine-templated uranyl selenate: (H3O)2[C12H30N2]3[(UO2)4(SeO4)8](H2O)5. Eur J Inorg Chem 2005:1653–1656

    Article  Google Scholar 

  24. Krivovichev SV, Kahlenberg V, Tananaev IG, Myasoedov BF (2005) Amine-templated uranyl selenates with layered structures. I. Structural diversity of sheets with a U:Se ratio of 1:2. Z Anorg Allg Chem 631:2358–2364

    Article  CAS  Google Scholar 

  25. Krivovichev SV, Tananaev IG, Kahlenberg V, Myasoedov BF (2005) Synthesis and crystal structure of the first uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)(SeO4)(SeO2OH)]. Dokl Phys Chem 403:124–127

    Article  CAS  Google Scholar 

  26. Krivovichev SV, Gurzhiy VV, Tananaev IG, Myasoedov BF (2006) Topology of inorganic complexes as a function of amine molecular structure in layered uranyl selenates. Dokl Phys Chem 409:228–232

    Article  CAS  Google Scholar 

  27. Krivovichev SV, Tananaev IG, Myasoedov BF (2006) Geometric isomerism of layered complexes of uranyl selenates: Synthesis and structure of (H3O)[C5H14N]2-[(UO2)3(SeO4)4(HSeO4)(H2O)] and (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4). Radiochemistry 48:552–560

    Article  CAS  Google Scholar 

  28. Krivovichev SV, Tananaev IG, Myasoedov BF (2006) Nanostructures in uranium oxocompounds. Mater Res Soc Symp Proc 893:325–335

    CAS  Google Scholar 

  29. Krivovichev SV, Tananaev IG, Kahlenberg V, Myasoedov BF (2006) Synthesis and crystal structure of a new uranyl selenite(IV)-selenate(VI), [C5H14N]4[(UO2)3(SeO4)4(HSeO3)(H2O)]-(H2SeO3)(HSeO4). Radiochemistry 48:217–222

    Article  CAS  Google Scholar 

  30. Krivovichev SV, Burns PC, Tananaev IG, Myasoedov BF (2007) Nanostructured actinide compounds. J Alloys Compd 444–445:457–463

    Article  Google Scholar 

  31. Krivovichev SV, Tananaev IG, Myasoedov BF (2007) Charge-density matching in organic–inorganic uranyl compounds. C R Chim 10:897–904

    Article  CAS  Google Scholar 

  32. Gurzhiy VV, Krivovichev SV (2008) Synthesis and crystal structure of new uranyl selenate Ni2(UO2)3(SeO4)5(H2O)16. Vestnik Sankt Peterb Univ Ser Geol 3:33–40

    Google Scholar 

  33. Krivovichev SV (2008) Crystal chemistry of selenates with mineral-like structures. VI. Hydrogen bonds in the crystal structure of [(H5O2)(H3O)(H2O)][(UO2)(SeO4)2]. Geol Ore Dep 50:795–800

    Article  Google Scholar 

  34. Krivovichev SV (2008) Crystal chemistry of selenates with mineral-like structures: V. Crystal structures of (H3O)2[(UO2)(SeO4)2(H2O)](H2O)2 and (H3O)2[(UO2)(SeO4)2(H2O)](H2O), new compounds with rhomboclase and goldichite topology. Geol Ore Dep 50:789–794

    Article  Google Scholar 

  35. Krivovichev SV, Gurzhiy VV, Tananaev IG, Myasoedov BF (2009) Uranyl selenates with organic templates: Principles of structure and characteristics of self-organization. Russ J Gen Chem 79:2723–2730

    Article  CAS  Google Scholar 

  36. Krivovichev SV (2009) Crystal chemistry of selenates with mineral-like structures: VII. The structure of (H3O)[(UO2)(SeO4)(SeO2OH)] and some structural features of selenite-selenates. Geol Ore Dep 51:663–667

    Article  Google Scholar 

  37. Krivovichev SV, Gurzhiy VV, Tananaev IG, Myasoedov BF (2009) Amine-templated uranyl selenates with chiral [(UO2)2(SeO4)3(H2O)]2− layers: topology, isomerism, structural relationships. Z Kristallogr 224:316–324

    Article  CAS  Google Scholar 

  38. Gurzhiy VV, Bessonov AA, Krivovichev SV, Tananaev IG, Armbruster T, Myasoedov BF (2009) Crystal chemistry of selenates with mineral-like structures: VIII. Butlerite chains in the structure of K(UO2)(SeO4)(OH)(H2O). Geol Ore Dep 51:833–837

    Article  Google Scholar 

  39. Gurzhiy VV, Krivovichev SV, Burns PC, Tananaev IG, Myasoedov BF (2010) Supramolecular templates for the synthesis of new nanostructured uranyl compounds: Crystal structure of [NH3(CH2)9NH3][(UO2)(SeO4)(SeO2OH)](NO3). Radiochemistry 52:1–6

    Article  CAS  Google Scholar 

  40. Krivovichev SV, Gurzhiy VV, Burns PC, Tananaev IG, Myasoedov BF (2010) Partially ordered organic-inorganic nanocomposites in the system UO2SeO4–H2O–NH3(CH2)9NH3. Radiochemistry 52:7–11

    Article  CAS  Google Scholar 

  41. Krivovichev SV (2010) Actinyl compounds with hexavalent elements (S, Cr, Se, Mo): structural diversity, nanoscale chemistry and cellular automata modeling. Eur J Inorg Chem.

    Google Scholar 

  42. Mikhailov YN, Kokh LA, Kuznetsov VG, Grevtseva TG, Sokol SK, Ellert GV (1977) Synthesis and crystal structure of potassium trisulfatouranylate K4(UO2(SO4)3). Koord Khim 3:508–513

    CAS  Google Scholar 

  43. Hayden LA, Burns PC (2002) A novel uranyl sulfate cluster in the structure of Na6(UO2)-(SO4)4(H2O)2. J Solid State Chem 163:313–318

    Article  CAS  Google Scholar 

  44. Norquist AJ, Doran MB, O'Hare D (2005) The role of amine sulfates in hydrothermal uranium chemistry. Inorg Chem 44:3837–3843

    Article  CAS  Google Scholar 

  45. Krivovichev SV (2008) Crystal structure of KNa3[(UO2)5O6(SO4)]. Radiochemistry 50:450–454

    Article  CAS  Google Scholar 

  46. Hennig C, Ikeda A, Schmeide K, Brendler V, Moll H, Tsushima S, Scheinost AC, Skanthakumar S, Wilson R, Soderholm L, Servaes S, Görrler-Walrand C, Van Deun R (2008) The relationship of monodentate and bidentate coordinated uranium(VI) sulfate in aqueous solution. Radiochim Acta 96:607–611

    Article  CAS  Google Scholar 

  47. Krivovichev SV (2008) Structural Crystallography of Inorganic Oxysalts, Oxford University Press, Oxford.

    Google Scholar 

  48. Krivovichev SV, Burns PC (2003) Geometrical isomerism in uranyl chromates I. Crystal structures of (UO2)(CrO4)(H2O)2, [(UO2)(CrO4)(H2O)2](H2O) and [(UO2)(CrO4)(H2O)2]4-(H2O)9. Z Kristallogr 218:568–574

    Article  CAS  Google Scholar 

  49. Serezhkin VN, Trunov VK (1981) Crystal structure of uranyl chromate 5.5 hydrate (UO2CrO .4 5.5H2O). Kristallografiya 26:301–304

    CAS  Google Scholar 

  50. Brandenburg NP, Loopstra BO (1973) Uranyl sulphate hydrate, UO2SO4(H2O)3.5. Cryst Struct Commun 2:243–246

    CAS  Google Scholar 

  51. Krivovichev SV, Burns PC (2003) Geometrical isomerism in uranyl chromates II. Crystal structures of Mg2[(UO2)3(CrO4)5](H2O)17 and Ca2[(UO2)3(CrO4)5](H2O)19. Z Kristallogr 218:683–690

    Article  CAS  Google Scholar 

  52. Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82:1–78

    Article  CAS  Google Scholar 

  53. Taulelle F, Pruski M, Amoureux JP, Lang D, Bailly A, Huguenard C, Haouas M, Gerardin C, Loiseau T, Férey G (1999) Isomerization of the prenucleation building unit during crystallization of AlPO4-CJ2: An MQMAS, CP-MQMAS, and HETCOR NMR study. J Am Chem Soc 121:12148–12153

    Article  CAS  Google Scholar 

  54. Serre C, Lorentz C, Taulelle F, Férey G (2003) Hydrothermal synthesis of nanoporous metalofluorophosphates. 2. In situ and ex situ 19F and 31P NMR of nano- and mesostructured titanium phosphates crystallogenesis. Chem Mater 15:2328–2337

    Article  CAS  Google Scholar 

  55. Serre S, Taulelle F, Férey G (2003) Rational design of porous titanophosphates. Chem Commun 2003:2755–2765

    Google Scholar 

  56. Vistad O, Akporiaye DE, Taulelle F, Lillerud KP (2003) In situ NMR of SAPO-34 crystallization. Chem Mater 15:1639–1649

    Article  CAS  Google Scholar 

  57. Loiseau T, Beitone L, Millange F, Taulelle F, O'Hare D, Férey G (2004) Observation and reactivity of the chainlike species ([Al(PO4)2]3−)n during the X-ray diffraction investigation of the hydrothermal synthesis of the super-sodalite sodium aluminophosphate MIL-74 (Na2Al7(PO4)12·4trenH3·Na(H2O)16). J Phys Chem B108:20020–20029

    Google Scholar 

  58. Férey G (1995) Oxyfluorinated microporous compounds ULM-n: Chemical parameters, structures and a proposed mechanism for their molecular tectonics. J Fluor Chem 72:187-193

    Article  Google Scholar 

  59. Férey G (1998) The new microporous compounds and their design. C R Acad Sci Ser IIc 1:1–13

    Google Scholar 

  60. Moll H, Reich T, Hennig C, Rossberg A, Szabo Z, Grenthe I (2000) Solution coordination chemistry of uranium in the binary UO 2+2 -SO 2−4 and the ternary UO 2+2 –SO 2−4 –OH– system. Radiochim Acta 88:559–566

    Article  CAS  Google Scholar 

  61. Neuefeind J, Skanthakumar S, Soderholm L (2004) Structure of the UO 2+2 –SO 2−4 ion pair in aqueous solution. Inorg Chem 43:2422–2426

    Article  CAS  Google Scholar 

  62. Hennig C, Schmeide K, Brendler V, Moll H, Tsushima S, Scheinost AC (2007) EXAFS investigation of U(VI), U(IV), and Th(IV) sulfato complexes in aqueous solution. Inorg Chem 46:5882–5892

    Article  CAS  Google Scholar 

  63. Ikeda A, Hennig C, Tsushima S, Takao K, Ikeda Y, Scheinost AC, Bernhard G (2007) Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution. Inorg Chem 46:4212–4219

    Article  CAS  Google Scholar 

  64. Hennig C, Kraus W, Emmerling F, Ikeda A, Scheinost AC (2008) Coordination of a uranium(IV) sulfate monomer in an aqueous solution and in the solid state. Inorg Chem 47:1634–1638

    Article  CAS  Google Scholar 

  65. Hennig C, Ikeda-Ohno A, Emmerling F, Kraus W, Bernhard G (2010) Comparative investigation of the solution species [U(CO3)5]6− and the crystal structure of Na6[U(CO3)5].12H2O. Dalton Trans 39:3744–3750

    Article  CAS  Google Scholar 

  66. Francis RJ, Price SJ, O'Brien S, Fogg AM, O'Hare D, Loiseau T, Férey G (1997) Formation of an intermediate phase during the hydrothermal synthesis of ULM-5 studied using time-resolved in situ X-ray powder diffraction. Chem Commun 1997:521–522

    Google Scholar 

  67. Walton RI, Millange F, Le Bail A, Loiseau T, Serre C, O'Hare D, Férey G (2000) The room-temperature crystallisation of a one-dimensional gallium fluorophosphate, Ga(HPO4)2F·H3N(CH2)3NH3·2H2O, a precursor to three-dimensional microporous gallium fluorophosphates. Chem Commun 2000:203–204

    Google Scholar 

  68. Walton RI, Norquist AJ, Neeraj S, Natarajan S, Rao CNR, O'Hare D (2001) Direct in situ observation of increasing structural dimensionality during the hydrothermal formation of open-framework zinc phosphates. Chem Commun 2001:1990–1991

    Google Scholar 

  69. Ayi AA, Choudhury A, Natarajan S, Neeraj S, Rao CNR (2001) Transformations of low-dimensional zinc phosphates to complex open-framework structures. Part 1: Zero-dimensional to one-, two- and three-dimensional structures. J Mater Chem 2001:1181–1191

    Article  Google Scholar 

  70. Choudhury A, Neeraj S, Natarajan S, Rao CNR (2001) Transformations of the low-dimensional zinc phosphates to complex open-framework structures. Part 2: One-dimensional ladder to two- and three-dimensional structures. J Mater Chem 2001:1537–1546

    Article  Google Scholar 

  71. Choudhury A, Neeraj S, Natarajan S, Rao CNR (2002) Transformations of two-dimensional layered zinc phosphates to three-dimensional and one-dimensional structures. J Mater Chem 2002:1044–1052

    Article  Google Scholar 

  72. Millange F, Walton RI, Guillou N, Loiseau T, O'Hare D, Férey G (2002) Two chain gallium fluorodiphosphates: Synthesis, structure solution, and their transient presence during the hydrothermal crystallisation of a microporous gallium fluorophosphate. Chem Commun 2002:826–827

    Google Scholar 

  73. Millange F, Walton RI, Guillou N, Loiseau T, O'Hare D, Férey G (2002) Synthesis and structure of low-dimensional gallium fluorodiphosphates seen during the crystallization of the three-dimensional microporous gallium fluorophosphate ULM-3. Chem Mater 14:4448–4459

    Article  CAS  Google Scholar 

  74. Wang K, Yu J, Song Y, Xu R (2003) Assembly of one-dimensional AlP2O 3−8 chains into three-dimensional MAlP2O8·C2N2H9 frameworks through transition metal cations (M = Ni2+, Co2+ and Fe2+). Dalton Trans 2003:99–103

    Article  Google Scholar 

  75. Norquist AJ, O'Hare D (2004) Kinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates. J Am Chem Soc 126:6673–6679

    Article  CAS  Google Scholar 

  76. Oliver S, Kuperman A, Ozin GA (1998) A new model for aluminophosphate formation: Transformation of a linear chain aluminophosphate to chain, layer, and framework structures. Angew Chem Int Ed 37:46–62

    Article  CAS  Google Scholar 

  77. Neeraj S, Natarajan S, Rao CNR (2000) Isolation of a zinc phosphate primary building unit [C6N2H18]2+[Zn(HPO4)(H2PO4)2]2− and its transformation to open-framework phosphate [C6N2H18]2+[Zn3(H2O)4(HPO4)4]2−. J Solid State Chem 150:417–422

    Article  CAS  Google Scholar 

  78. Rao CNR, Natarajan S, Choudhury A, Neeraj S, Ayi AA (2001) Aufbau principle of complex open-framework structures of metal phosphates with different dimensionalities. Acc Chem Res 34:80–87

    Article  CAS  Google Scholar 

  79. Gurzhiy VV, Kovrugin VD, Krivovichev SV (2010) Submitted.

    Google Scholar 

  80. von Neumann J (1951) A general and logical theory of automata. In: Jeffress LA (ed) Celebral Mechanisms in Behaviour: The Hixon Symposium. Wiley, New York, pp. 1–32

    Google Scholar 

  81. Toffoli T, Margolus N (1987) Cellular Automata Machines: A New Environment for Modeling. MIT Press, Boston

    Google Scholar 

  82. Ilachinski A (2001) Cellular Automata: A Discrete Universe. World Scientific, Singapore

    Google Scholar 

  83. Wolfram S (2002) A New Kind of Science. Wolfram Media, Inc., Urbana

    Google Scholar 

  84. Mackay A (1976) Crystal symmetry. Phys Bull 1976:495

    Google Scholar 

  85. Krivovichev S (2004) Crystal structures and cellular automata. Acta Crystallogr A60:257–262

    CAS  Google Scholar 

  86. Shevchenko VY, Krivovichev SV (2008) Where are genes in paulingite? Mathematical principles of formation of inorganic materials on the atomic level. Struct Chem 19:571–577

    Article  CAS  Google Scholar 

  87. Shevchenko VY, Krivovichev SV, Mackay AL (2010) Cellular automata and local order in the structural chemistry of the lovozerite group minerals. Glass Phys Chem 36:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the internal budget grant of St. Petersburg State University (# 3.37.84.2011) and the Programme of Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Krivovichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krivovichev, S.V., Gurzhiy, V.V., Tananaev, I.G., Myasoedov, B.F. (2011). Nanoscale Chemistry of Uranyl Selenates. In: Kalmykov, S., Denecke, M. (eds) Actinide Nanoparticle Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11432-8_9

Download citation

Publish with us

Policies and ethics