Skip to main content

Actinide Nanoparticle Characterization by Mass Spectrometry

  • Chapter
  • First Online:

Abstract

This chapter provides an overview of mass spectrometric methods for the investigation of actinide nanoparticles. The great variety of applications requires an equally large number of different mass spectrometric techniques. Trace analysis of bulk fragments on the submicron scale, such as detection of the so-called hot particles from nuclear accidents in the environment, call for ultrasensitive detection with the capability of measuring isotope ratios with high precision. In many applications, imaging mass spectrometric techniques, primarily secondary ion mass spectrometry, are used. Investigations focusing on the formation of nanoparticles in solutions require low invasive ion sources, such as electrospray ionization, which are able to reproduce the species distribution in aqueous solution. The most frequently used ion sources and mass spectrometers are introduced, and progress in characterizing actinide nanoparticles by mass spectrometry is discussed using selected recent examples from the literature. Special emphasis is placed on the observation of nanoparticle formation in solution by electrospray mass spectrometry. Polymerization in solutions containing Th(IV), Pu(IV), and Zr(IV), as a homolog of plutonium, are discussed in greater detail in the last section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Becker JS (2003) Mass spectrometry of long-lived radionuclides. Spectrochimica Acta. Part B: Atomic Spectroscopy 58: 1757–1784

    Article  Google Scholar 

  • Bergmann T, Martin TP, Schaber H (1990) High-resolution time-of-flight mass spectrometers. 2. Reflector design. The Review of Scientific Instruments 61: 2592–2600

    Article  CAS  Google Scholar 

  • Brown PL, Curti E, Grambow B, Ekberg C, Mompean FJ, Perrone J, Illemassene M (2005) Chemical thermodynamics of zirconium. Elsevier, Amsterdam

    Google Scholar 

  • Bürger S, Buda RA, Geckeis H, Huber G, Kratz JV, Kunz P, Gostomski CLv, Passler G, Remmert A, Trautmann N (2006) Isotope selective ultratrace analysis of plutonium by resonance ionisation mass spectrometry. In: Povinec PP, Sanchez-Cabeza JA (eds) Radioactivity in the environment. Elsevier, Amsterdam, pp 581–591

    Google Scholar 

  • Cho HR, Walther C, Rothe J, Neck V, Denecke MA, Dardenne K, Fanghänel T (2005) Combined LIBD and EXAFS investigation of the formation and structure of Zr(IV) colloids. Analytical and Bioanalytical Chemistry 383: 28–40

    Article  CAS  Google Scholar 

  • Clark DL, Hecker SS, Jarvinen GD, Neu MP (2006) Chapter 7: Plutonium. In: Morss LR, Edelstein NM, Fuger J, Katz JJ (eds) The chemistry of actinide and transactinide elements. Springer, Heidelberg, pp 813–1203

    Chapter  Google Scholar 

  • Dai M, Kelley JM, Buesseler KO (2002) Sources and migration of plutonium in groundwater at the Savannah River Site. Environmental Science & Technology 36: 3690–3699

    Article  CAS  Google Scholar 

  • Danesi PR, Markowicz A, Chinea-Cano E, Burkart W, Salbu B, Donohue D, Ruedenauer F, Hedberg M, Vogt S, Zahradnik P, Ciurapinski A (2003) Depleted uranium particles in selected Kosovo samples. Journal of Environmental Radioactivity 64: 143–154

    Article  CAS  Google Scholar 

  • Degueldre C, Favarger PY (2004) Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 62: 1051–1054

    Article  CAS  Google Scholar 

  • Degueldre C, Favarger PY, Rosse R, Wold S (2006) Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 68: 623–628

    Article  CAS  Google Scholar 

  • Di Marco VB, Bombi GG (2006) Electrospray mass spectrometry (ESI-MS) in the study of metal-ligand solution equilibria. Mass Spectrometry Reviews 25: 347–379

    Article  Google Scholar 

  • Ekberg C, Albinsson Y, Comarmond MJ, Brown PL (2000) Study on the complexation behaviour of thorium(IV). 1. Hydrolysis equilibria. Journal of Solution Chemistry 29: 63–86

    Article  CAS  Google Scholar 

  • Erdmann N, Kratz JV, Trautmann N, Passler G (2009) Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles. Analytical and Bioanalytical Chemistry 395: 1911–1918

    Article  CAS  Google Scholar 

  • Esaka F, Esaka KT, Lee CG, Magara M, Sakurai S, Usuda S, Watanabe K (2007) Particle isolation for analysis of uranium minor isotopes in individual particles by secondary ion mass spectrometry. Talanta 71: 1011–1015

    Article  CAS  Google Scholar 

  • Esaka F, Watanabe K, Onodera T, Lee CG, Magara M, Sakurai S, Usuda S (2008) Dependence of the precision of uranium isotope ratio on particle diameter in individual particle analysis with SIMS. Applied Surface Science 255: 1512–1515

    Article  CAS  Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB (2006) Biotransformation of plutonium complexed with citric acid. Radiochimica Acta 94: 731–737

    Article  CAS  Google Scholar 

  • Gross JH (2004) Electrospray ionization mass spectrometry. Springer, Berlin

    Google Scholar 

  • Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technecium. Elsevier, Amsterdam

    Google Scholar 

  • Jernstrom J, Eriksson M, Simon R, Tamborini G, Bildstein O, Marquez RC, Kehl SR, Hamilton TF, Ranebo Y, Betti M (2006) Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques. Spectrochimica Acta. Part B: Atomic Spectroscopy 61: 971–979

    Article  Google Scholar 

  • Johannson G (1968) The structure of the dinuclear complex of thorium. Acta Chemica Scandinavica 22: 389–398

    Article  Google Scholar 

  • Johnson GL, Toth LM (1978a) Plutonium (IV) and thorium(IV) hydrous polymer chemistry. Report 3: 43386

    Google Scholar 

  • Johnson GL, Toth LM (1978b) Plutonium(IV) and thorium(IV) hydrous polymer chemistry. Oak Ridge National Laboratory, TM-6365, Tennessee

    Google Scholar 

  • Keith-Roach MJ, Buratti MV, Worsfold PJ (2005) Thorium complexation by hydroxamate siderophores in perturbed multicomponent systems using flow injection electrospray ionization mass spectrometry. Analytical Chemistry 77: 7335–7341

    Article  CAS  Google Scholar 

  • Ketelaer J, Blaum K, Block M, Eberhardt K, Eibach M, Ferrer R, George S, Herfurth F, Ketter J, Nagy S, Repp J, Schweikhard L, Smorra C, Sturm S, Ulmer S (2009) Recent developments in ion detection techniques for Penning trap mass spectrometry at TRIGA-TRAP. The European Physical Journal. A: Hadrons and Nuclei 42: 311–317

    Article  CAS  Google Scholar 

  • Kim JI (1994) Actinide colloids in natural aquifer systems. MRS Bulletin 19: 47–53

    CAS  Google Scholar 

  • Kips RS, Kristo MJ (2009) Investigation of chemical changes in uranium oxyfluoride particles using secondary ion mass spectrometry. Journal of Radioanalytical and Nuclear Chemistry 282: 1031–1035

    Article  CAS  Google Scholar 

  • Kips R, Pidduck AJ, Houlton MR, Leenaers A, Mace JD, Marie O, Pointurier F, Stefaniak EA, Taylor PDP, Van den Berghe S, Van Espen P, Van Grieken R, Wellum R (2009) Determination of fluorine in uranium oxyfluoride particles as an indicator of particle age. Spectrochimica Acta. Part B: Atomic Spectroscopy 64: 199–207

    Article  Google Scholar 

  • Lind OC, Salbu B, Janssens K, Proost K, Garcia-Leon M, Garcia-Tenorio R (2007) Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. The Science of the Total Environment 376: 294–305

    Article  CAS  Google Scholar 

  • Lloyd MH, Haire RG (1978) The chemistry of plutonium in sol-gel processes. Radiochimica Acta 25: 139–148

    CAS  Google Scholar 

  • Luo MB, Hu B, Zhang X, Peng DF, Chen HW, Zhang LL, Huan YF (2009) Extractive electrospray ionization mass spectrometry for sensitive detection of uranyl species in natural water samples. Analytical Chemistry 82: 282–289

    Article  Google Scholar 

  • Maul J, Berg T, Eberhardt K, Hoog I, Huber G, Karpuk S, Passler G, Strachnov I, Trautmann N, Wendt K (2004) A laser desorption/resonance enhanced photoionisation TOF-system for the spatially resolved trace analysis of elements. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 226: 644–650

    CAS  Google Scholar 

  • Moulin C (2003) On the use of time-resolved laser-induced fluorescence (TRLIF) and electrospray mass spectrometry (ES-MS) for speciation studies. Radiochimica Acta 91: 651–657

    Article  CAS  Google Scholar 

  • Moulin V, Moulin C (2001) Radionuclide speciation in the environment: A review. Radiochimica Acta 89: 773–778

    Article  CAS  Google Scholar 

  • Moulin C, Charron N, Plancque G, Virelizier H (2000) Speciation of uranium by electrospray ionization mass spectrometry: Comparison with time-resolved laser-induced fluorescence. Applied Spectroscopy 54: 843–848

    Article  CAS  Google Scholar 

  • Moulin C, Amekraz B, Colette S, Doizi D, Jacopin C, Lamouroux C, Plancque G (2006) Electrospray mass spectrometry for actinides and lanthanide speciation. Journal of Alloys and Compounds 408: 1242–1245

    Article  Google Scholar 

  • Neck V, Altmaier M, Seibert A, Yun JI, Marquardt CM, Fanghänel T (2007) Solubility and redox reactions of Pu(IV) hydrous oxide: Evidence for the formation of PuO$_{2+x}$(s,hyd). Radiochimica Acta 95: 193–207

    Article  CAS  Google Scholar 

  • Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314: 638–641

    Article  CAS  Google Scholar 

  • Ockenden DW, Welch GA (1956) The preparation and properties of some plutonium compounds. V. Colloidal quadrivalent plutonium. Journal of the Chemical Society 1: 3358–3363

    Google Scholar 

  • Rai D, Moore DA, Oakes CS, Yui M (2000) Thermodynamic model for the solubility of thorium dioxide in the Na+−Cl–OH–H2O system at 23 degrees C and 90 degrees C. Radiochimica Acta 88: 297–306

    Article  CAS  Google Scholar 

  • Rand MH, Fuger J, Grenthe I, Neck V, Rai D (2008) Chemical thermodynamics of thorium. Elsevier, Amsterdam

    Google Scholar 

  • Ranebo Y, Hedberg PML, Whitehouse MJ, Ingeneri K, Littmann S (2009) Improved isotopic SIMS measurements of uranium particles for nuclear safeguard purposes. Journal of Analytical Atomic Spectrometry 24: 277–287

    Article  CAS  Google Scholar 

  • Reents WD, GE ZZ (2000) Simultaneous elemental composition and size distributions of submicron particles in real time using laser atomization/ionization mass spectrometry. Aerosol Science and Technology 33: 122

    Google Scholar 

  • Rothe J, Walther C, Denecke MA, Fanghänel T (2004) XAFS and LIBD investigation of the formation and structure of colloidal Pu(IV) hydrolysis products. Inorganic Chemistry 43: 4708–4718

    Article  CAS  Google Scholar 

  • Shen Y, Zhao YG, Guo SL, Cui JY, Liu Y, Li JH, Xu J, Zhang HZ (2008) Study on analysis of isotopic ratio of uranium-bearing particle in swipe samples by FT-TIMS. Radiation Measurements 43: S299–S302

    Article  CAS  Google Scholar 

  • Shinonaga T, Esaka F, Magara M, Klose D, Donohue D (2008) Isotopic analysis of single uranium and plutonium particles by chemical treatment and mass spectrometry. Spectrochimica Acta. Part B: Atomic Spectroscopy 63: 1324–1328

    Article  Google Scholar 

  • Singhal A, Toth LM, Lin JS, Affholter K (1996) Zirconium(IV) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution. Journal of the American Chemical Society 118: 11529–11534

    Article  CAS  Google Scholar 

  • Somogyi A, Pasilis SP, Pemberton JE (2007) Electrospray ionization of uranyl-citrate complexes: Adduct formation and ion-molecule reactions in 3D ion trap and ion cyclotron resonance trapping instruments. International Journal of Mass Spectrometry 265: 281–294

    Article  CAS  Google Scholar 

  • Stetzer O, Betti M, van Geel J, Erdmann N, Kratz JV, Schenkel R, Trautmann N (2004) Determination of the U-235 content in uranium oxide particles by fission track analysis. Nuclear Instruments & Methods in Physics Research Section A, Accelerators Spectrometers Detectors and Associated Equipment 525: 582–592

    Article  CAS  Google Scholar 

  • Thiyagarajan P, Diamond H, Soderholm L, Horwitz EP, Toth LM, Felker LK (1990) Plutonium (IV) polymers in aqueous and organic media. Inorganic Chemistry 29: 1902–1907

    Article  CAS  Google Scholar 

  • Toth LM, Friedman HA, Osborne MM (1981) Polymerization of plutonium (IV) in aqueous nitric acid solutions. Journal of Inorganic and Nuclear Chemistry 43: 2929–2934

    Article  CAS  Google Scholar 

  • Toth LM, Friedman HA, Osborne MM (1983) Aspects of plutonium (IV) hydrous polymer chemistry. ACS Symposium Series 216: 231–240

    Article  CAS  Google Scholar 

  • Trimborn A, Hinz KP, Spengler B (2000) Online analysis of atmospheric particles with a transportable laser mass spectrometer. Aerosol Sci Techn 33: 191

    Google Scholar 

  • Tsierkezos NG, Roithova J, Schroder D, Oncak M, Slavicek P (2009) Can electrospray mass spectrometry quantitatively probe speciation? Hydrolysis of uranyl nitrate studied by gas-phase methods. Inorganic Chemistry 48: 6287–6296

    Article  CAS  Google Scholar 

  • Varga Z (2008) Application of laser ablation inductively coupled plasma mass spectrometry for the isotopic analysis of single uranium particles. Analytica Chimica Acta 625: 1–7

    Article  CAS  Google Scholar 

  • Wallenius M, Tamborini G, Koch L (2001) The “age” of plutonium particles. Radiochimica Acta 89: 55–58

    Article  CAS  Google Scholar 

  • Walther C, Rothe J, M. Fuss, S. Büchner, S. Koltsov, Bergmann T (2007) Investigation of polynuclear Zr-hydroxide complexes by nano-electrospray mass-spectrometry combined with XAFS. Analytical and Bioanalytical Chemistry 388: 409–431

    Article  CAS  Google Scholar 

  • Walther C, Fuss M, Büchner S (2008) Formation and hydrolysis of polynuclear Th(IV) complexes – a nano-electrospray mass-spectrometry study. Radiochimica Acta 96: 411–425

    Article  CAS  Google Scholar 

  • Walther C, Fuss M, Buchner S, Geckeis H (2009a) Stability of Th(IV) polymers measured by electrospray mass spectrometry and laser-induced breakdown detection. Journal of Radioanalytical and Nuclear Chemistry 282: 1003–1008

    Article  CAS  Google Scholar 

  • Walther C, Rothe J, Brendebach B, Fuss M, Altmaier M, Marquardt CM, Büchner S, Cho H-R, Yun J-I (2009b) New insights in the formation processes of Pu(IV) colloids. Radiochimica Acta 97: 199–207

    Article  CAS  Google Scholar 

  • Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Analytical Chemistry 68: 1–8

    Article  CAS  Google Scholar 

  • Wilson RE, Skanthakumar S, Sigmon G, Burns PC, Soderholm L (2007) Structures of dimeric hydrolysis products of thorium. Inorganic Chemistry 46: 2368–2372

    Article  CAS  Google Scholar 

  • Zhang XZ, Esaka F, Esaka KT, Magara M, Sakurai S, Usuda S, Watanabe K (2007) Application of inductively coupled plasma mass spectrometry to the determination of uranium isotope ratios in individual particles for nuclear safeguards. Spectrochimica Acta Part B: Atomic Spectroscopy 62: 1130–1134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Walther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walther, C. (2011). Actinide Nanoparticle Characterization by Mass Spectrometry. In: Kalmykov, S., Denecke, M. (eds) Actinide Nanoparticle Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11432-8_5

Download citation

Publish with us

Policies and ethics