Low-Port Tree Representations

  • Shiri Chechik
  • David Peleg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5911)

Abstract

Consider an n-node undirected graph G(V,E) with a pre-assigned port numbering for the outgoing edges of each node. The port numbers assigned to a node u of degree \(\deg(u)\) are \(\{0,1,\ldots,\deg(u)-1\}\). In certain contexts it is necessary to maintain a directed spanning tree of G, in which case each node needs to remember the port number leading to its parent. Hence the cost of a spanning tree T is the total number of bits the nodes need to store in order to remember T. This paper addresses the question of asymptotically bounding the cost of the optimal tree, as a function of the graph size. A tight upper bound of O(n) is established on this cost, thus improving on the best previously known bound of O(nloglogn) [6] and proving the conjecture raised therein. This is achieved by presenting a polynomial time algorithm for constructing a spanning tree T of cost O(n) for a given general graph G with an arbitrary port labeling.

References

  1. 1.
    Abraham, I., Gavoille, C., Malkhi, D., Nisan, N., Thorup, M.: Compact name-independent routing with minimum stretch. In: Proc. 16th ACM Symp. on Parallel Algorithms & Architectures (SPAA), pp. 20–24 (2004)Google Scholar
  2. 2.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics. McGraw-Hill, New York (1998)Google Scholar
  3. 3.
    Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Compact distributed data structures for adaptive network routing. In: Proc. 21st ACM Symp. on Theory of Computing, pp. 230–240 (1989)Google Scholar
  4. 4.
    Awerbuch, B., Peleg, D.: Routing with polynomial communication-space trade-off. SIAM J. on Discrete Math. 5, 151–162 (1992)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 335–346. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Labeling Schemes for Tree Representation. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC 2005. LNCS, vol. 3741, pp. 13–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In: Proc. 12th ACM Symp. on Discrete Algorithms, pp. 210–219 (2001)Google Scholar
  9. 9.
    Kannan, S., Naor, M., Rudich, S.: Implicit Representation of Graphs. SIAM J. on Descrete Math. 5, 596–603 (1992)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling Schemes for Flow and Connectivity. SIAM J. Computing 34, 23–40 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Korman, A., Kutten, S., Peleg, D.: Proof Labeling Schemes. In: Proc. 24th ACM Symp. on Principles of Distributed Computing, PODC (2005)Google Scholar
  12. 12.
    Korman, A., Peleg, D., Rodeh, Y.: Labeling Schemes for Dynamic Tree Networks. Theory of Computing Systems (Special Issue of STACS 2002) 37, 49–75 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1995)Google Scholar
  14. 14.
    Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 30–41. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Peleg, D.: Informative labeling schemes for graphs. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 579–588. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)MATHGoogle Scholar
  17. 17.
    Peleg, D., Upfal, E.: A tradeoff between size and efficiency for routing tables. J. ACM 36, 510–530 (1989)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Santoro, N., Khatib, R.: Labelling and implicit routing in networks. The Computer Journal 28, 5–8 (1985)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms & Architectures (SPAA), pp. 1–10 (2001)Google Scholar
  20. 20.
    van Leeuwen, J., Tan, R.B.: Routing with compact routing tables. In: Rozenberg, G., Salomaa, A. (eds.) The Book of L, pp. 259–273. Springer, Heidelberg (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shiri Chechik
    • 1
  • David Peleg
    • 1
  1. 1.Department of Computer Science and Applied MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations