Advertisement

Graph Partitioning and Traffic Grooming with Bounded Degree Request Graph

  • Zhentao Li
  • Ignasi Sau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5911)

Abstract

We study a graph partitioning problem which arises from traffic grooming in optical networks. We wish to minimize the equipment cost in a SONET WDM ring network by minimizing the number of Add-Drop Multiplexers (ADMs) used. We consider the version introduced by Muñoz and Sau [12] where the ring is unidirectional with a grooming factor C, and we must design the network (namely, place the ADMs at the nodes) so that it can support any request graph with maximum degree at most Δ. This problem is essentially equivalent to finding the least integer M(C,Δ) such that the edges of any graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges and each vertex appears in at most M(C,Δ) subgraphs [12]. The cases where Δ= 2 and Δ = 3,C ≠ 4 were solved by Muñoz and Sau [12]. In this article we establish the value of M(C,Δ) for many more cases, leaving open only the case where Δ ≥ 5 is odd, \(\Delta \pmod{2C}\) is between 3 and C − 1, C ≥ 4, and the request graph does not contain a perfect matching. In particular, we answer a conjecture of [12].

Keywords

optical networks traffic grooming ADM graph decomposition cubic graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Teague, V., Wormald, N.C.: Linear Arboricity and Linear k-Arboricity of Regular Graphs. Graphs and Combinatorics 17(1), 11–16 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amini, O., Pérennes, S., Sau, I.: Hardness and Approximation of Traffic Grooming. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 561–573. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bermond, J.-C., Coudert, D.: Traffic Grooming in Unidirectional WDM Ring Networks using Design Theory. In: IEEE ICC, vol. 2, pp. 1402–1406 (2003)Google Scholar
  4. 4.
    Bermond, J.-C., Coudert, D.: Grooming. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, ch. VI.27, 2nd edn. Discrete Mathematics and its Applications, vol. 42, pp. 493–496. CRC Press, Boca Raton (2006)Google Scholar
  5. 5.
    Bermond, J.-C., Fouquet, J.-L., Habib, M., Péroche, B.: On linear k-arboricity. Discrete Mathematics 52(2-3), 123–132 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chandran, L.S.: A high girth graph construction. SIAM J. Discrete Math. 16(3), 366–370 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dutta, R., Rouskas, N.: Traffic grooming in WDM networks: Past and future. IEEE Network 16(6), 46–56 (2002)CrossRefGoogle Scholar
  8. 8.
    Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Approximating the traffic grooming problem in tree and star networks. Journal of Parallel and Distributed Computing 68(7), 939–948 (2008)CrossRefGoogle Scholar
  9. 9.
    Flammini, M., Moscardelli, L., Shalom, M., Zaks, S.: Approximating the traffic grooming problem. Journal of Discrete Algorithms 6(3), 472–479 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Goldschmidt, O., Hochbaum, D., Levin, A., Olinick, E.: The SONET edge-partition problem. Networks 41(1), 13–23 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Modiano, E., Lin, P.: Traffic grooming in WDM networks. IEEE Communications Magazine 39(7), 124–129 (2001)CrossRefGoogle Scholar
  12. 12.
    Muñoz, X., Sau, I.: Traffic Grooming in Unidirectional WDM Rings with Bounded Degree Request Graph. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 300–311. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Petersen, J.P.: Die Theorie der Regulären Graphs. Acta Mathematica 15, 193–220 (1891)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Thomassen, C.: Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5. J. Comb. Theory Ser. B 75(1), 100–109 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zhu, K., Mukherjee, B.: A review of traffic grooming in WDM optical networks: Architectures and challenges. Optical Networks Magazine 4(2), 55–64 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhentao Li
    • 1
  • Ignasi Sau
    • 2
    • 3
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada
  2. 2.Mascotte project - INRIA/CNRS/UNS - Sophia AntipolisFrance
  3. 3.Graph Theory and Combinatorics group of UPCBarcelonaSpain

Personalised recommendations