Connected Feedback Vertex Set in Planar Graphs

  • Alexander Grigoriev
  • René Sitters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5911)


We study the problem of finding a minimum tree spanning the faces of a given planar graph. We show that a constant factor approximation follows from the unconnected version if the minimum degree is 3. Moreover, we present a polynomial time approximation scheme for both the connected and unconnected version.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bafna, V., Berman, P., Fujito, T.: A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem. SIAM J. Discrete Math. 12, 289–297 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. JACM 41, 153–180 (1994)MATHCrossRefGoogle Scholar
  3. 3.
    Barnette, D.: An upper bound for the diameter of a polytope. Discr. Math. 10, 9–13 (1974)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-like approximation algorithms for the vertex feedback set problem. Artificial Intelligence 83, 167–188 (1996)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bodlaender, H.L., Feremans, C., Grigoriev, A., Penninkx, E., Sitters, R., Wolle, T.: On the minimum corridor connection and other generalized geometric problems. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 69–82. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bodlaender, H.L., Grigoriev, A.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49, 1–11 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs. Oper. Res. Lett. 22, 111–118 (1998)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. The Computer Journal 51, 292–302 (2008)CrossRefGoogle Scholar
  9. 9.
    Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for the connected vertex cover problem. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 202–213. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)MATHGoogle Scholar
  13. 13.
    Goemans, M.X., Williamson, D.P.: Primal-Dual Approximation Algorithms for Feedback Problems in Planar Graphs. Combinatorica 17, 1–23 (1997)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Savage, C.D.: Depth-first search and the vertex cover problem. Inf. Process. Lett. 14, 233–235 (1982)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander Grigoriev
    • 1
  • René Sitters
    • 2
  1. 1.Department of Quantitative EconomicsMaastricht UniversityThe Netherlands
  2. 2.Department of Econometrics and Operations ResearchVU UniversityAmsterdamThe Netherlands

Personalised recommendations