Advertisement

Fundamentals of Modern Thermodynamics

  • Jitao Wang

Abstract

Modern thermodynamics is a part of thermodynamics for complex systems, or more exactly, modern thermodynamics is a part of thermodynamics for researches on coupling systems, in which both nonspontaneous and spontaneous processes exist simultaneously. Because of the complicities of the simultaneous existence of nonspontaneous and spontaneous processes, modern thermodynamics had been blocked at its developing stage nearly through the whole of the 20th century. The term “modern thermodynamics” was not generally accepted nearly through the whole of the 20th century, or only meant the status of thermodynamics at that time. The interaction between simultaneous nonspontaneous and spontaneous processes in the same system had been called “compensation” by Clausius in 1865, but is now usually called thermodynamic coupling, which is the core of modern thermodynamics.

Keywords

Entropy Production Irreversible Process Nonequilibrium Thermodynamic Thermodynamic Force Classi Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kondepudi D, Prigogine I. Modern Thermodynamics-From Heat Engines to Dissipative Structures [M]. New York: John Wiley & Sons, 1998. http://www.wiley.com/.Google Scholar
  2. 2.
    Prigogine I. Introduction to Thermodynamics of Irreversible Processes [M]. 3rd edn. New York: Interscience Publishers, John Wiley & Sons, 1967.Google Scholar
  3. 3.
    Li R-S. Nonequilibrium Thermodynamics and Dissipative Structure [M], Beijing: Tsinghua University Press, 1986.Google Scholar
  4. 4.
    Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations Their Thermodynamic Basis [M]. Boston: Cambridge Univ Press, 1998.Google Scholar
  5. 5.
    Fu X-C, Shen W-X, Yao T-Y. Physical Chemistry [M]. 4th edn. Beijing: High Education Press, 1990, 172.Google Scholar
  6. 6.
    Wang J-T, Zhang DW, Liu Z-J. Thermodynamic Coupling Model for Low Pressure Diamond Growth from the Vapor Phase [M]. Beijing: Science Press, 1998, reprinted in 2000, 175 pages.Google Scholar
  7. 7.
    Wang J-T. Phase Diagrams of Stationary Nonequilibrium States — Thermodynamics for Low Pressure Diamond Growth from the Vapor Phase [M]. Beijing: Science Press, 2000, 212 pages.Google Scholar
  8. 8.
    Wang J-T. Nonequilibrium Nondissipative Thermodynamics — With Application to Low-Pressure Diamond Synthesis [M]. Heidelberg: Springer, 2002.CrossRefGoogle Scholar
  9. 9.
    Wang J-T. Modern thermodynamics — and a whole view of thermodynamics [M]. Shanghai: Fudan Univ. Press, 2005, 223 pagesGoogle Scholar
  10. 10.
    Lin Z-H (ed.). Thermodynamics and Statistic Physics [M]. Beijing: Beijing University Press, 2007, 1–2.Google Scholar
  11. 11.
    Clausius R. Mechanical Theory of Heat [M]. London: John van Voorst, 1867, Ninth memoir, 364.Google Scholar
  12. 12.
    Burk D. J Phys Chem [J], 1931, 35: 432.CrossRefGoogle Scholar
  13. 13.
    Glasstone S. Textbook of Physical Chemistry [M]. 2nd edn 7th printing. England: MacMillan, 1951, 230.Google Scholar
  14. 14.
    De Donder Th, Van Rysselberghe P. Thermodynamic Theory of Affinity — A book of principles [M]. 2nd edn. Stanford: Stanford University Press, 1936.Google Scholar
  15. 15.
    Van Rysselberghe P. J Phys Chem [J], 1937, 41: 787.CrossRefGoogle Scholar
  16. 16.
    Van Rysselberghe P. Bull Ac Roy Belg (Cl Sc) [J], 1936, 22: 1330; 1937, 23: 416. Presente par De Donder M.Google Scholar
  17. 17.
    Zheng Z-Z. Introduction to Thermodynamics for Irreversible Processes and Modern Reaction Kinetics [M]. Beijing: High Education Press, 1983, 50–51.Google Scholar
  18. 18.
    Prigogine I, Defay R. Chemical Thermodynamics [M]. translated by Everett DH. London: Longmans Green and Co Inc, 1954, 38.Google Scholar
  19. 19.
    Southerland W M. Biochemistry [M]. New York: Churchill Livingstone, 1990, 53–55.Google Scholar
  20. 20.
    Castellan G W. Physical Chemistry [M]. 3rd edn. London: Addison-Wesley Pub Co, 1983, 246.Google Scholar
  21. 21.
    Leidler K J, Meiser J H. Physical Chemistry [M] Benjamin/Cummings Publishing Inc, 1982, 154.Google Scholar
  22. 22.
    Boudart M. J Phys Chem [J], 1982, 87: 2766–2789.Google Scholar
  23. 23.
    Boudart M. In: Catalyst Design [M]. New York: Wiley Interscience Pub, Chapter 5, 1987.Google Scholar
  24. 24.
    Li R-S. Catalysts and thermodynamics coupling of chemical reactions. Acta Chemica Sinica [J], Eng edn, 1989(4): 305–310.Google Scholar
  25. 25.
    Koltz I M, Rosenberg R M. Chemical Thermodynamics [M]. New York: Benjamin, 1972, 150.Google Scholar
  26. 26.
    Wang J-T. The Second Law of Thermodynamics in the Current 21st Century (plenary lecture). 2007 National Symp on Thermodynamics and Statistics [C], Yanji, China: 6 Aug 2007.Google Scholar
  27. 27.
    Wang J-T, Zheng P-J. The Second Law in Modern Thermodynamics. 19th Internat Conf on Chem Thermodynamics [C]. Boulder, CO, USA: 30 Jul–4 Aug 2006, http://www.symp16.nist.gov/pdf/p2086.pdf. Cited 20 Apr 2008.Google Scholar
  28. 28.
    Wang J-T, Zheng P-J. Thermodynamics for Carat-size Synthetic Diamonds. 19th Internat Conf on Chem Thermodynamics [C]. Boulder, CO, USA: 30 Jul–4 Aug 2006. http://www.symp16.nist.gov/pdf/p2082.pdf. Cited 20 Apr 2008.Google Scholar
  29. 29.
    Wang J-T, Zheng P-J. Extended Carnot Theorem. 19th Internat Conf on Chem Thermodynamics [C]. Boulder, CO, USA: 30 Jul–4 Aug 2006. http://www.symp16.nist.gov/pdf/p745.pdf. Cited 20 Apr 2008.Google Scholar
  30. 30.
    Wang J-T. Modern Thermodynamics in the 21st Century (plenary lecture). 2006 National Symp on Thermodynamics and Statistics [C]. Lanzhou, China: 17 Jul 2006.Google Scholar
  31. 31.
    Wang J-T. Modern Thermodynamics of the 21st Century and Nonequilibrium Phase Diagrams for Carat-size Synthetic Diamond. Proc. of the 13th National Symp. (Chinese and Japanese Join Meeting) on Phase Diagrams [C]. Xiamen, China: 9 Nov 2006, 245.Google Scholar
  32. 32.
    Wang J-T. A New Field of Nonequilibrium Nondissipative Thermodynamics (plenary lecture). Abstracts of Russian International Conf on Chemical Thermodynamics (RCCT2005) [C].Moscow, Russia: 31 Jun–2 Jul, 2005.Google Scholar
  33. 33.
    Wang J-T, Zhang D W, Yu W-F. The Second Law of Thermodynamics for Advanced Thin Films. 5th Internat Con. on Thin Film Physics and Applications [C]. Shanghai: 31 May–2 Jun 2004.Google Scholar
  34. 34.
    Wang J-T, Zhang D W, Yu W-F. Modern Thermodynamics for CVD Diamond. 9th Internat Symp on Diamond Materials [C]. Extended Abstract of The Electrochemical Society. Honolulu, Hawaii: 8 Oct 2004.Google Scholar
  35. 35.
    Wang J-T. Modern Physics Lett B [J], 2002, 16(23 & 24): 885–888.ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Wang J-T, Liu Z-K, Zhang D W. In: Frontiers of Solid State Chemistry [M]. Proc of the International Symposium on Solid State Chemistry in China, Eds. By Feng S-H and Chen JS. Singapore: World Scientific, 2002, 541–548.CrossRefGoogle Scholar
  37. 37.
    Wang J-T. Modern thermodynamics for activated chemical vapor deposition (CVD) processes. In: Chemical Vapor Deposition, (extended abstract) 2nd Asian Conference, at Gyeongju, Korea, 28–30 May 2001 [C]. Korea: Ponhang University of Science and Technology, 2001, 63–66.Google Scholar
  38. 38.
    Wang J-T. Nonequilibrium nondissipative thermodynamics — and its application to diamond film deposition. In: Solid-State and Integrated-Circuit Technology, 6th International Conf, at Shanghai, China, 22–25 Oct 2001 [C]. Beijing: IEEE Press & People’s Posts and Telecommunication Publishing House, 2001 vol 2: 1421–1426.Google Scholar
  39. 39.
    Wang J-T. Modern thermodynamics in CVD of hard materials. In: The Science of HardMaterials, 7th International Conference [C]. Ixtapa, Mexico: 5–9 Mar 2001, 105–106; Wang J-T, Shen J-Y, Zhang D W. J Refractory Metals and Hard Materials [J], 2001, 19(4–6): 461–466.Google Scholar
  40. 40.
    Wang J-T. Modern thermodynamics for phase diagrams of stationary states. In: Phase Diagram Calculation (CALPHAD XXIX) (Abstracts). 29th International Conference [C]. MIT, Cambridge, Massachusetts, USA: 18–23 Jun 2000, 8.Google Scholar
  41. 41.
    Wang J-T. Systematization of modern thermodynamics. In: Chemical Thermodynamics (ICCT-2000), abstracts of 16th IUPAC International Conference [C], Halifax, Canada: 6–11 Aug 2000, 150.Google Scholar
  42. 42.
    Wang J-T. Modern thermodynamics for advanced materials research. Advanced Materials. In: Internat Conf on Eng & Tech Science 2000, vol 1, Session 3, at Beijing, China: Oct 2000, ed by Song J, Yin R-Y, [C]. Beijing: New World Press, 2000, 864–870.Google Scholar
  43. 43.
    Wang J-T. Physics (Beijing) [J], 2003, 32(1): 9–15.Google Scholar
  44. 44.
    Wang J-T, Zhang DW. Nonequilibrium Nondissipative Thermodynamics & Calculation of Nonequilibrium Phase Diagrams. In: Proc. of 11th National Symp. on Phase Diagrams [C]. Xining: 20–24 Aug 2002, 131–134; J Salt Lake Research [J], 2003, 11(1): 62–65.Google Scholar
  45. 45.
    Wang J-T. University Chemistry [J], 2002, 17(2): 29–34.Google Scholar
  46. 46.
    Wang J-T. Physics (Beijing) [J], 2000, 29(9): 524–530.Google Scholar
  47. 47.
    Onsager L. Physical Review [J], 1931, 37: 405; 38: 2265.ADSCrossRefGoogle Scholar
  48. 48.
    Schrödinger E. What is life [M]. 1st edn. London: Cambridge University Press, 1944; Doubleday, 1956, 71.Google Scholar
  49. 49.
    Shen R-Q, Gu Q-M. Textbook of Biochemistry [M]. Beijing; High Education Press, 1993, 328.Google Scholar
  50. 50.
    Zubay G. Biochemistry [M]. Massacusetts: Addison-Wesley Publishing Company, 1983, 387–395.Google Scholar
  51. 51.
    Mitchell P. Science [J], 1979, 206: 1148–1159.ADSCrossRefGoogle Scholar

Copyright information

© Science Press Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jitao Wang
    • 1
  1. 1.Microelectronics DepartmentFudan UniversityShanghaiChina

Personalised recommendations