Advertisement

Introduction

Chapter
  • 1.6k Downloads

Abstract

Since the digital information age, signal processing has performed an increasingly important function in the areas of science and technology, among which blind signal processing (BSP), as one of the focal points, has great potential. The word “Blind” in BSP means that there are no training data and no prior knowledge of system parameters, so BSP can be utilized very generally.

Keywords

Independent Component Analysis Independent Component Analysis Source Separation Blind Source Separation Blind Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jutten C, Herault J (1991) Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 28(1): 1–10CrossRefGoogle Scholar
  2. [2]
    Sorouchyari E (1991) Blind separation of sources, Part: Stability analysis. Signal Processing 24(1): 21-29Google Scholar
  3. [3]
    Comon P, Jutten C, Herault J (1991) Blind separation of sources, Part: Problems statement. Signal Processing 24(1): 11–20zbMATHCrossRefGoogle Scholar
  4. [4]
    Deville Y (1996) A unified stability analysis of the Herault-Jutten source separation neural network. Signal Processing 51(3): 229–233MathSciNetCrossRefGoogle Scholar
  5. [5]
    Deville Y (1999) Analysis of the convergence properties of selfnormalized source separation neural networks. IEEE Transactions on Signal Processing 47(5): 1272–1287MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Tong L, Liu R, Soon V C et al (1991) Indeterminacy and identifiability of bind identification. IEEE Transaction on Circuits and Systems 38(5): 499–509zbMATHCrossRefGoogle Scholar
  7. [7]
    Tong L, Inouye Y, Liu R (1993) Waveform preserving blind estimation of multiple independent sources. IEEE Transactions on Signal Processing 41(7): 2461–2470zbMATHCrossRefGoogle Scholar
  8. [8]
    Comon P (1994) Independent component analysis, a new concept? Signal Processing 36(3): 287–314zbMATHCrossRefGoogle Scholar
  9. [9]
    Cao X R, Liu R W (1996) General approach to blind source separation. IEEE Transactions on Signal Processing 44(3): 562–571CrossRefGoogle Scholar
  10. [10]
    Bell A J, Sejnowski T J (1995) An information maximisation approach to blind separation and blind deconvolution. Neural Computation 7(6): 1004–1034CrossRefGoogle Scholar
  11. [11]
    Cichocki A, Unbehauen R, Rummert E (1994) Robust learning algorithm for blind separation of signals. Electronic Letters 30(17): 1386–1387CrossRefGoogle Scholar
  12. [12]
    Cichocki A, Unbehauen R (1996) Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Transactions on Circuits and Systems 43(11): 894–906CrossRefGoogle Scholar
  13. [13]
    Karhunen J, Joutsensalo J (1994) Representation and separation of signals using nonlinear PCA type learning. Neural Networks 7(1): 113–127CrossRefGoogle Scholar
  14. [14]
    Karhunen J, Oja E, Wang L et al (1997) A class of neural networks for independent component analysis. IEEE Transactions on Neural Networks 8(3): 486–504CrossRefGoogle Scholar
  15. [15]
    Karhunen J, Pajunen P, Oja E (1998) The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing 22(1): 5–20zbMATHCrossRefGoogle Scholar
  16. [16]
    Karhunen J, Wang L, Vigario R (1995) Nonlinear PCA type approaches for source separation and independent component analysis. In: Proceedings of ICNN’95, Paris, 1995, pp 995–1000Google Scholar
  17. [17]
    Oja E (1997) The nonlinear PCA learning rule in independent component analysis. Neurocomputing 17: 25–45CrossRefGoogle Scholar
  18. [18]
    Pham D T, Garrat P, Jutten C (1992) Separation of a mixtures of independent sources through a maximum likelihood approach. In: Proceedings of EUSIPCO, Brussels, pp 771–774Google Scholar
  19. [19]
    Pham D T (1996) Blind separation of instantaneous mixtures of sources via an independent component analysis. IEEE Transactions on Signal Processing 44(11): 2768–2779CrossRefGoogle Scholar
  20. [20]
    Pham D T, Garat P (1997) Blind separation of mixtures of independent sources through a quasi-maximum likelihood approach. IEEE Transactions on Signal Processing 45(7): 1712–1725zbMATHCrossRefGoogle Scholar
  21. [21]
    Pearlmutter B A, Parra L C (1996) A context sensitive generalization of ICA. In: Proceedings of ICNIP, Hong Kong, 1996, pp 151–156Google Scholar
  22. [22]
    Cardoso J F, Amari S I (1997) Maximum likelihood source separation: equivariance and adaptivity. In: Proceedings of SYSID’97, 11th IFAC Symposium on System Identification, Fukuoka, 1997, pp 1063–1068Google Scholar
  23. [23]
    Cardoso J F (1997) Infomax and maximum likelihood for source separation. IEEE Letters on Signal Processing 4(4): 112–114CrossRefGoogle Scholar
  24. [24]
    Amari S I, Cichocki A, Yang H H (1996) A new learning algorithm for blind signal separation. In: Advances in Neural Information Processing Systems, Denver, Colorado, August 1996, pp 757–763Google Scholar
  25. [25]
    Amari S I, Cichocki A (1998) Adaptive blind signal processing— neural network approaches. Proceedings of the IEEE 86(10): 2026–2048CrossRefGoogle Scholar
  26. [26]
    Yang H H, Amari S I, Cichocki A (1997) Adaptive on-line learning algorithms for blind separation—maximum entropy and minimum mutal information. Neural Computation 7(9): 1457–1482CrossRefGoogle Scholar
  27. [27]
    Oja E, Karhunen (1995) Signal separation by nonlinear Hebbian learning. In: Computational Intelligence. New York Press, New York, pp 83–97Google Scholar
  28. [28]
    Hyvärinen A, Oja E (1998) Independent component analysis by general nonlinear Hebbian like learning rules. Signal Processing 64(3): 301–313zbMATHCrossRefGoogle Scholar
  29. [29]
    Hyvärinen A (1997) One unit contrast functions for independent component analysis: A statistical analysis. In: Neural Networks for Signal Processing, Amelia Island, Florida, 1997, pp 388–397Google Scholar
  30. [30]
    Hyvärinen A (1997) A family of fixed point algorithms for independent component analysis. In: Proceedings of ICASSP’97, Munich, 1997, pp 3917–3920Google Scholar
  31. [31]
    Hyvärinen A (1999) Fast and robust fixed point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3): 626–634CrossRefGoogle Scholar
  32. [32]
    Hyvärinen A (1999) The fixed point algorithm and maximum likelihood estimation for independent component analysis. Neural Processing LettersGoogle Scholar
  33. [33]
    Hyvärinen A Oja E (1997) A fast fixed point algorithm for independent component analysis. Neural Computation 9(7): 1483–1492CrossRefGoogle Scholar
  34. [34]
    Hyvärinen A (1999) Survey on independent component analysis. Neural Computing Surveys 2: 94–128Google Scholar
  35. [35]
    Cardoso J F (1989) Source separation using higher order moments. In: Proceedings of ICASSP’89, Glasgow, 1989, pp 2109–2112Google Scholar
  36. [36]
    Cardoso J F (1999) High-order contrast for independent component analysis. Neural Computation 11(1): 157–192MathSciNetCrossRefGoogle Scholar
  37. [37]
    Cardoso J F (1996) Jacobi angles for simultaneous diagonalization. SIAM Journal of Mathematical Analysis and Applications 17(1): 161–164MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    Kendall M, Stuart A (1958) The Advanced Theory of Statistics. Charles Griffin & Company, LondonGoogle Scholar
  39. [39]
    Macchi O, Moreau E (1997) Self adaptive source separation, Part: Convergence analysis of a direct linear network controlled by the Herault Jutten algorithm. IEEE Transactions on Signal Processing 45(4): 918–926CrossRefGoogle Scholar
  40. [40]
    Cardoso J F (1995) The equivariant approach to source separation. In: Proceedings of NOLTA, Las Vegas, Nevada, 1995, pp 55–60Google Scholar
  41. [41]
    Cardoso J F, Laheld B (1996) Equivariant adaptive source separation. IEEE Transactions on Signal Processing 44(12): 3017–3030CrossRefGoogle Scholar
  42. [42]
    Amari S I (1998) Natural gradient works efficiently in learning. Neural Computation 10: 251–276CrossRefGoogle Scholar
  43. [43]
    Amari S I (1997) Neural learning in structured parameter spaces—natural riemannian gradient. In: Advances in Neural Information Processing. Denver, Colorado, 1997, pp 127–133Google Scholar
  44. [44]
    Amari S I, Douglas S C (1998) Why natural gradient? In: Proceedings of ICASSP’98, Seattle, Washington, 1998, pp 1213–1216Google Scholar
  45. [45]
    Douglas S C, Amari S I. Natural gradient adaptation. In: Haykin S (ed) Unsupervised adaptive filtering. Wiley, New YorkGoogle Scholar
  46. [46]
    Hyvärinen A (1998) New approximations of differential entropy for independent component analysis and projection pursuit. In: Advances in Neural Information Processing Systems. The MIT Press, Denver, pp 273–279Google Scholar
  47. [47]
    Giannakopoulos X, Karhunen J, Oja E (1998) Experimental comparison of neural ICA algorithms. In: Proceedings of ICANN’98, Skövde, 1998, pp 651–656Google Scholar
  48. [48]
    Lee T W, Girolami M, Sejnowski T J (1998) Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation 10(3): 609–633Google Scholar
  49. [49]
    Douglas S C, Cichocki A, Amari S I (1997) Multichannel blind separation and deconvolution of sources with arbitrary distributions. In: Neural Networks for Signal Processing, Proceedings of 1997 IEEE Workshop (NNSP-97), Amelia Island, Florida, 1997, pp 436–445Google Scholar
  50. [50]
    Choi S, Cichocki A, Amari S I (2000) Flexible independent component analysis. Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 26(1–2): 25–38zbMATHCrossRefGoogle Scholar
  51. [51]
    Delfosse N, Loubaton P (1995) Adaptive blind separation of independent sources: A deflation approach. Signal Processing 45(1): 59–83zbMATHCrossRefGoogle Scholar
  52. [52]
    Cichocki A, Thawonmas R, Amari S I (1997) Sequential blind signal extraction in order specified by stochastic properties. Electronics Letters 33(1): 64–65CrossRefGoogle Scholar
  53. [53]
    Kung S Y (1997) Independent component analysis in hybrid mixtures: KuicNet learning algorithm and numerical analysis. In: Proceedings of International Symposium of Multimedia Information Processing, Taipei, 1997, pp 368–381Google Scholar
  54. [54]
    Kung S Y, Mejuto C. Extraction of independent components from hybrid mixtures: KuicNet learning algorithm and applications. In: Proceedings of ICASSP’98, Seattle, Washington, 1998, pp 1209–1212Google Scholar
  55. [55]
    Amari S I, Chen T P, Cichocki A (1997) Stability analysis of adaptive blind source separation. Neural Networks 10(8): 1345–1351CrossRefGoogle Scholar
  56. [56]
    Cardoso J F (1998) On the stability of source separation algorithms. In: Proceedings of IEEE SSAP’98, Portland, Oregon, 1998Google Scholar
  57. [57]
    Cardoso J F (1998) Blind signal separation: Statistical principles. Proceedings of the IEEE 9(10): 2009–2025CrossRefGoogle Scholar
  58. [58]
    Cardoso J F (2000) Entropic contrasts for source separation: Geometry and stability. In: Haykin S (ed) Unsupervised adaptive filtering. Wiley, New YorkGoogle Scholar
  59. [59]
    Bernstein I H, Teng G, Garbin C P (1988) Applied multivariate analysis. Springer-Verlag, New YorkCrossRefGoogle Scholar
  60. [60]
    Jolliffe I T (1986) Principal component analysis. Springer, New YorkCrossRefGoogle Scholar
  61. [61]
    Oja E (1992) Principal components, minor components, and linear neural networks. Neural Networks 5(6): 927–935CrossRefGoogle Scholar
  62. [62]
    Diamantaras K I, Kung S Y (1996) Principal component neural networks: Theory and applications. Wiley, New YorkzbMATHGoogle Scholar
  63. [63]
    Chen T P, Amari S, Lin Q (1998) A unified algorithm for principal and minor components extraction. Neural Networks 11(3): 385–390CrossRefGoogle Scholar
  64. [64]
    Friedman J H (1987) Exploratory projection pursuit. Journal of the American Statistical Association 82(397): 249–266MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    Jones M C, Sibson R (1987) What is projection pursuit? Journal of the Royal Statistical Society, Series A 150(1): 1–36MathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    Yang H H (1998) On-line blind equalization via on-line blind separation. Signal Processing 68(3): 271–281zbMATHCrossRefGoogle Scholar
  67. [67]
    Douglas S C, Haykin S (1997) On the relationship between blind deconvolution and blind source separation. In: Proceedings of 31st Asilomar Conference on Signals Systems and Computers, Pacific Grove, CA, 1997, pp 1591–1595Google Scholar
  68. [68]
    Haykin S (2000) Unsupervised adaptive filtering. Vol.2: Blind deconvolution. Wiley, New YorkGoogle Scholar
  69. [69]
    Zhang X D, Bao Z (2001) Blind source separation. Acta Electronica Sinica 29 (12): 1766–1771Google Scholar
  70. [70]
    Zhang X D, Zhu X L, Bao Z (2002) Phased learning based blind signal processing. Science in China, Series E 32(5): 693–703Google Scholar
  71. [71]
    Liu J, He Z Y (2002) A survey of blind source separation and blind deconvolution. Acta Electronica Sinica 30(4): 570–576Google Scholar
  72. [72]
    Zhang H Y, Shi X Z (2001) An effective algorithm for blind separation of arbitrary source signals. Acta Electronica Sinica 29(10): 1392–1396Google Scholar
  73. [73]
    Lee T W (1998) ICA theory and applications. Kluwer Academic, BostonGoogle Scholar
  74. [74]
    Girolami M (2000) Advances in independent component analysis. Springer, LondonzbMATHCrossRefGoogle Scholar
  75. [75]
    Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New YorkCrossRefGoogle Scholar
  76. [76]
    Roberts S, Everson R (2001) Independent component analysis: Principles and practice. Cambridge University Press, New YorkGoogle Scholar
  77. [77]
    Cichocki A, Amari S I (2002) Adaptive blind signal and image processing-learning algorithms and applications. Wiley, New YorkCrossRefGoogle Scholar
  78. [78]
    Jutten C, Karhunen J (2003) Advances in nonlinear blind source separation. In: Proceedings of ICA-2003, Nara, 2003Google Scholar
  79. [79]
    Lewicki M S, Sejnowski T J (2002) Learning overcomplete representation. Neural Computation 12(2): 337–365CrossRefGoogle Scholar
  80. [80]
    Li Y, Cichocki A, Amari, S-I (2003) Sparse component analysis for blind source separation with less sensors than sources. In: Proceedings of ICA-2003, Nara, 2003, pp 89–94Google Scholar
  81. [81]
    Jafari M G, Chambers J A (2003) Adaptive noise cancellation and blind source separation. In: Proceedings of ICA-2003, Nara, 2003, pp 627–632Google Scholar

Copyright information

© Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Vibration Shock & NoiseShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations