Advertisement

Radiopharmaceutical Production

  • Uwe HolzwarthEmail author
Chapter

Abstract

Radiopharmaceuticals are medicinal formulations containing one or more radionuclides. The emissions of the radionuclide are used either in diagnostics to trace and visualise the biodistribution of a substance or in therapy to deliver a high radiation dose to a target tissue. The particularity of radiopharmaceuticals consists of their capability to retrieve information on a molecular level and to address systems with very low densities of receptor molecules in vivo and in a noninvasive way [1, 2].

Keywords

Positron Emission Tomography Medicinal Product Linear Energy Transfer Good Manufacturing Practice Peptide Receptor Radionuclide Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank F. Barberis Negra (GE Healthcare, Ispra) for helpful comments on the daily praxis of QC and GMP.

References

  1. 1.
    Nijsen, J.F.W., Krijger, G.C., van het Schip, A.D., The bright future of radionuclides for cancer therapy. Anti-Cancer Agents Med Chem. 7, 271–290 (2007)CrossRefGoogle Scholar
  2. 2.
    Volkert, W.A., Hoffman, T., Therapeutical radiopharmaceuticals. Chem Rev. 99, 2269–2292 (1999)CrossRefPubMedGoogle Scholar
  3. 3.
    Nuclear Technology Review 2007, IAEA/NTR/2007, Annex II -Radiopharmaceuticals: production and availability. IAEA, Vienna, Austria, pp. 60–71 (2007)Google Scholar
  4. 4.
    Ruhlmann, J., Oehr, P., Biersack, H.-J. (eds.), PET in Oncology, basics and clinical applications. Springer, Berlin, Heidelberg, New York etc. (1999)Google Scholar
  5. 5.
    IAEA-TECDOC-1340, Manual for reactor produced radioisotopes. International Atomic Energy Agency, Vienna, Austria (2003)Google Scholar
  6. 6.
    Kidd, L., Curies for patients. Nucl Eng Int 53, 26–32 (2008)Google Scholar
  7. 7.
    Technical Reports Series No. 465, Cyclotron produced radionuclides: principles and practice. International Atomic Energy Agency, Vienna, Austria (2008)Google Scholar
  8. 8.
    Stamm, H. and Gibson, P.N., Research with light ion cyclotrons in Europe, in: Proceedings of the 5th International Conference on Isotopes, 5ICI, Brussels, Belgium, April 25–29, 2005; Medimond S.r.l., Bologna, Italy, pp. 1–5 (2005)Google Scholar
  9. 9.
    Machulla, H.-J., Positron emitting radionuclides, in Sampson, C.B., ed., Textbook of radiopharmacy: theory and practice, 3rd ed. Gordon and Breach Science Publishers, Australia/Canada/China/France/Germany/India/Japan/Luxembourg/Malaysia/The Netherlands/Russia/Singapore/Switzerland, pp. 31–35 (1999)Google Scholar
  10. 10.
    Elliott, A.T., Radionuclide generators, in Sampson, C.B., ed., Textbook of radiopharmacy: theory and practice, 3rd ed. Gordon and Breach Science Publishers, Australia/Canada/China/France/Germany/India/Japan/Luxembourg/Malaysia/The Netherlands/Russia/Singapore/Switzerlandpp. 19–29 (1999)Google Scholar
  11. 11.
    Feder, T., US weighs entering radioisotope market. Phys Today. 61, 22–24 (2008)Google Scholar
  12. 12.
    Brans, B., Linden, O., Giammarile, F., Tennvall, J., Punt, C., Clinical applications of newer radionuclide therapies. Eur J Cancer. 42, 994–1003 (2006)CrossRefPubMedGoogle Scholar
  13. 13.
    Stahl, A.R., Freudenberg, L., Bokisch, A., Jentzen, W., A novel view on dosimetry-related radionuclide therapy: presentation of a calculatory model and its implementation for radioiodine therapy of metastasized differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 36, 1147–1155 (2009)CrossRefPubMedGoogle Scholar
  14. 14.
    Rubino, C., De Vathaire, F., Dottorini, M.E., Hall, P., Schvartz, C., Couette, J.E., Dondon, M.G., Abbas, M.T., Langlois, C., Schlumberger, M., Second primary malignancies in thyroid cancer patients. Br J Cancer. 89, 1638–1644 (2003)CrossRefPubMedGoogle Scholar
  15. 15.
    Lam, M.G.E.H., de Klerk, J.M.H., van Rijk, P.P., Zonnenberg, B.A., Bone seeking radiopharmaceuticals for palliation of pain in cancer patients. Anti-Cancer Agents Med Chem. 7, 381–397 (2007)CrossRefGoogle Scholar
  16. 16.
    Stigbrand, T., Carlsson, J. and Adams, G.P. (eds.), Targeted radionuclide tumor therapy – biological aspects. Springer Science + Business Media B.V., New York (2008)Google Scholar
  17. 17.
    Sampson, C.B., ed., Textbook of radiopharmacy: theory and practice, 3rd ed. Gordon and Breach Science Publishers, Australia/Canada/China/France/Germany/India/Japan/ Luxembourg/Malaysia/The Netherlands/Russia/Singapore/Switzerland (1999)Google Scholar
  18. 18.
    Hoskin, P. (ed.), Radiotherapy in practice: radioisotope therapy, Oxford University Press, Oxford (2007)Google Scholar
  19. 19.
    O’Donoghue, J.A. and Wheldon, T.E., Targeted radiotherapy using Auger electron emitters. Phys Med Biol. 41, 1973–1992 (1996)CrossRefPubMedGoogle Scholar
  20. 20.
    Wiseman, G.A., Witzig, T.E., Yttrium-90 (90Y) ibritumomab tiuxetan (Zevalin) induces longterm durable responses in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Cancer Biother Radiopharm 20, 185–188 (2005)CrossRefPubMedGoogle Scholar
  21. 21.
    Pohlman, B., Sweetenham, J., Macklis, R.M., Review of clinical radioimmunotherapy. Exp Rev Anticancer Ther 6, 445–461 (2006)CrossRefGoogle Scholar
  22. 22.
    Davies, A.J., Radioimmunotherapy for B-cell lymphoma: Y90-ibritumomab tiuxetan and I131 tositumomab. Oncogene. 26, 3614–3628 (2007)CrossRefPubMedGoogle Scholar
  23. 23.
    Morschhauser, F., Radford, J., Van Hoof, A., Vitolo, U., Soubeyran, P., Tilly, H. Huijgens, P.C., Kolstad, A., d’Amore, F., Diaz, M.G., Petrini, M., Sebban, C., Zinzani, P.L., van Oers, M.H.J., van Putten, W., Bischof-Delaloye, A., Rohatiner, A., Salles, G., Kuhlmann, J., Hagenbeek, A. Phase III trial of consolidation therapy with yttrium-90 -ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol. 26, 5156–5164 (2008)Google Scholar
  24. 24.
    Reubi, J.C., Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 24, 389–427 (2003)CrossRefPubMedGoogle Scholar
  25. 25.
    Reubi, J.C., Schär, J.-C., Waser, B., Wenger, S., Heppeler, A., Schmitt, J.S., Mäcke, H. Affinity profiles for human somatostatine receptor subtypes SST1 – SST5 of somatostatine radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 27, 273–282 (2000)CrossRefPubMedGoogle Scholar
  26. 26.
    Kwekkeboom, D.J., Müller-Brand, J., Paganelli, G., Anthony, L.B., Pauwels, S., Kvols, L.K., O’Dorisio, T.M., Valkema, R., Bodei, L., Chinol, M., Maecke, H., Krenning, E.P., Overview of results of peptide receptor radionuclide therapy with 3 radiolabelled somatostatin analogues. J Nucl Med. 46, 62S–66S (2005)PubMedGoogle Scholar
  27. 27.
    Prasad, V., Fetscher, S. and Baum, R.P., Changing role of somatostatin receptor targeted drugs in NET: Nuclear Medicine’s view. J Pharm Pharm Sci. 10, 321s–337s (2007)PubMedGoogle Scholar
  28. 28.
    De Jong, M., Verwijnen, S.M., de Visser, M., Kwekkeboom, D.J., Valkema, R., Krenning, E.P. Peptides for radionuclide therapy, in Stigbrand, T., Carlsson, J., Adams, G.P., eds., Targeted radionuclide tumor therapy – biological aspects. Springer Science + Business Media, New York, pp. 117–144 (2008)CrossRefGoogle Scholar
  29. 29.
    Becherer, A., Szabó, M., Karanikas, G., Wunderbaldinger, P., Angelberger, P., Raderer, M., Kurtaran, A., Dudczak, R., Kletter, K., Imaging of advanced neuroendocrine tumours with 18F-FDOPA PET. J Nucl Med. 45, 1161–1167 (2004)PubMedGoogle Scholar
  30. 30.
    Prasad, V., Ambrosini, V., Alavi, A., Fanti, S., Baum, R.P., PET/CT in neuroendocrine tumours: evaluation of receptor status and metabolism. PET Clin. 2, 351–375 (2007)CrossRefGoogle Scholar
  31. 31.
    Antunes, P., Ginj, M., Zhang, H., Wasser, B., Baum, R.P., Reubi, J.C., Maecke, H., Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 34, 982–993 (2007)CrossRefPubMedGoogle Scholar
  32. 32.
    De Jong, M., Kwekkeboom, D., Valkema, R., Krenning, E.P., Tumour therapy with radiolabelled peptides: current status and future directions. Dig Liver Dis. 36, S48–S54 (2004)CrossRefGoogle Scholar
  33. 33.
    Stigbrand, T., Eriksson, D., Riklund, K., Johansson, L. Targeting tumours with radiolabelled antibodies, in Stigbrand, T., Carlsson, J., Adams, G.P., eds., Targeted radionuclide tumor therapy – biological aspects. Springer Science + Business Media, New York, pp. 59–76 (2008)CrossRefGoogle Scholar
  34. 34.
    Goldenberg, D.M., Sharkey, R.M., Paganelli, G., Barbet, J., Chatal, J.F., Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol. 24, 823–834 (2006)CrossRefPubMedGoogle Scholar
  35. 35.
    Boerman, O.C., Van Schaijk, F.G., Oyen, W.J.G., Corstens, F.H.M., Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med. 44, 400–411 (2003)PubMedGoogle Scholar
  36. 36.
    Cremonesi, M., Ferrari, M., Chinol, M., Bartolomei, M., Stabin, M.G., Sacco, E., Fiorenza, M., Tosi, G., Paganelli, G., Dosimetry in radionuclide therapies with 90Y-conjugates: the IEO experience. Quart J Nucl Med. 44, 325–332 (2000)Google Scholar
  37. 37.
    Stoldt, H.S., Aftab, F., Chinol, M., Paganelli, G., Luca, F., Testori, A., Geraghty, J.G., Pretargeting strategies for radio-immunoguided tumour localization and therapy. Eur J Cancer. Part A, 186–192 (1997)Google Scholar
  38. 38.
    Faraji, A.H. and Wipf, P., Nanoparticles in cellular drug delivery. Bioorg Med Chem. 17, 2950–2962 (2009)CrossRefPubMedGoogle Scholar
  39. 39.
    Rahman, W.N., Bishara N., Ackerly, T., He, C.F., Jackson P., Wong, C., Davidson, R., Geso, M., Gold nanoparticles: clinical nanomedicine, radiation oncology – enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med. 5, 136–142 (2009)CrossRefGoogle Scholar
  40. 40.
    Hamoudeh, M., Kamleh, M.A., Diab, R., Fessi, H., Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev. 60, 1329–1346 (2008)CrossRefPubMedGoogle Scholar
  41. 41.
    Bouchat, V., Nuttens, V.E., Lucas, S., Michiels, C., Masereel, B., Féron, O., Gallez, B., Borght, T.V., Radioimmunotherapy with radioactive nanoparticles: First results of dosimetry for vascularized and necrosed solid tumours. Med Phys. 34, 4504–4513 (2007)CrossRefPubMedGoogle Scholar
  42. 42.
    Torchilin, V.P., Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9, E128–E147 (2007)CrossRefPubMedGoogle Scholar
  43. 43.
    DeNardo, S.J., DeNardo, G.L., Miers, L.A., Natarajan, A., Foreman, A.R., Gruettner, C., Adamson, G.N., Ivkov, R., Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res. 11, 7087s–7092s (2005)CrossRefPubMedGoogle Scholar
  44. 44.
    Hayashi, K., Moriya, M., Sakamoto, W., Yogo, T. Chemoselective synthesis of folic acidfunctionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater. 21, 1318–1325 (2009)CrossRefGoogle Scholar
  45. 45.
    Tolmachev, V. Choice of radionuclides and radiolabelling techniques, in Stigbrand, T., Carlsson, J., Adams, G.P., eds., Targeted radionuclide tumor therapy – biological aspects. Springer Science + Business Media, New York, pp. 145–174 (2008)CrossRefGoogle Scholar
  46. 46.
    Carlsson, J., Forssell Aronsson, E., Hietala, S.-O., Stigbrand, T., Tennvall, J., Tumour therapy with radionuclides: assessment of progress and problems. Radiother Oncol. 66, 107–117 (2003)CrossRefPubMedGoogle Scholar
  47. 47.
    Bethge, K., Kraft, G., Kreisler, P., Walter, G., Medical Applications of Nuclear Physics, Springer-Verlag, Berlin, Heidelberg, New York, Hong Kong, London, Milan, Paris, Tokyo (2004)Google Scholar
  48. 48.
    Laforest, R. and Liu, X., Image quality with non-standard nuclides in PET. Quart J Nucl Med. 52, 151–158 (2008)Google Scholar
  49. 49.
    National Nuclear Data Center, Brookhaven National Laboratory; Sonzogni, A. (database manager and Web programming), http://www.nndc.bnl.gov/nudat2
  50. 50.
    Erdi, Y.E., The use of PET for radiotherapy. Curr Med Imaging Rev. 3, 3–16 (2007)CrossRefGoogle Scholar
  51. 51.
    Modak, A., Breath tests with 13C substrates. J Breath Res. 3, p.1 (2009)CrossRefGoogle Scholar
  52. 52.
    Goddard, A.F. and Logan, R.P.H., Review article: urea breath tests for detecting Helicobacter pylori. Aliment Pharmacol Ther. 11, 641–649 (1997)CrossRefPubMedGoogle Scholar
  53. 53.
    Uusijärvi, H., Bernhardt, P., Ericsson, T., Forssel-Aronsson, E., Dosimetric characterization of radionuclides for systemic tumour therapy: influence of particle range, photon emission, and subcellular distribution. Med Phys. 33, 3260–3269 (2006)CrossRefPubMedGoogle Scholar
  54. 54.
    Wheldon, T.E. and O’Donoghue, The radiobiology of targeted radiotherapy. Int J Radiat Biol. 58, 1–21 (1990)Google Scholar
  55. 55.
    O’Donoghue, J.A., Bardiès, M., Wheldon, T.E., Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 36, 1902–1909 (1995)PubMedGoogle Scholar
  56. 56.
    Sgouros, G. High-LET-Emitting radionuclides for cancer therapy, in Stigbrand, T., Carlsson, J., Adams, G.P., eds., Targeted radionuclide tumor therapy – biological aspects. Springer Science + Business Media, New York, pp. 175–180 (2008)CrossRefGoogle Scholar
  57. 57.
    Lundqvist, H., Stenerlöw, B., Gedda, L., The Auger effect in molecular therapy, in Stigbrand, T., Carlsson, J., Adams, G.P., eds., Targeted radionuclide tumor therapy – biological aspects. Springer Science + Business Media, New York, pp. 195–214 (2008)CrossRefGoogle Scholar
  58. 58.
    Lechner, A., Blaickner, M., Gianolini, S., Poljanc, K., Aiginger, H., Georg, D. Targeted radionuclide therapy: theoretical study of the relationship between tumour control probability and tumour radius for a 32P/33P radionuclide cocktail. Phys Med Biol. 53, 1961–1974 (2008)CrossRefPubMedGoogle Scholar
  59. 59.
    Pratt, B., Evans, S. Physics principles in the clinical use of radioisotopes, in Hoskin, P., ed., Radiotherapy in practice: radioisotope therapy, Oxford University Press, Oxford, pp. 1–8 (2007)Google Scholar
  60. 60.
    Weinreich, R., Molecular radiotherapy with 211At, in Amaldi, U., Larsson, B., Lemoigne, Y., eds., Advances in hadrontherapy, Elsevier Science, Amsterdam, pp. 359–382 (1997)Google Scholar
  61. 61.
    Dearling, J.L.J., Pedley, R.B. Antinbody directed radioisotope therapy, in Hoskin, P., ed., Radiotherapy in practice: radioisotope therapy; Oxford University Press, Oxford pp. 9–45 (2007)Google Scholar
  62. 62.
    Howell, R.W., Goddu, S.M., Rao, D.V., Proliferation and the advantage of longer-lived radionuclides in radioimmunotherapy. Med Phys. 25, 37–42 (1998)CrossRefPubMedGoogle Scholar
  63. 63.
    Flynn, A.A., Green, A.J., Pedley, R.B., et al. A model-based approach for the optimization of radioimmunotherapy through antibody design and radionuclide selection. Cancer. 94, 1249–1257 (2002)CrossRefPubMedGoogle Scholar
  64. 64.
    Couturier, O., Supiot, S., Degraef-Mougin, M., Faivre-Chauvet, A., Carlier, T., Chatal, J.F., Davodeau, F., Cherel, M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging. 32, 601–614 (2005)CrossRefPubMedGoogle Scholar
  65. 65.
    Morgenstern, A., Apostolidis, C., Bruchertseifer, F., Capote, R., Gouder, T., Simonelli, F., Sin, M., Abbas, K. Cross-sections of the reaction 232Th(p,3n)230 Pa for production of 230U for targeted alpha therapy. Appl Radiat Isot. 66, 1275–1280 (2008)CrossRefPubMedGoogle Scholar
  66. 66.
    Boll, R.A., Malkemus, D., Mirzadeh, S., Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot. 62, 667–679 (2005)CrossRefPubMedGoogle Scholar
  67. 67.
    Henriksen, G., Hoff, P., Larsen, R.H., Evaluation of potential chelating agents for radium. Appl Radiat Isot. 56, 667–671 (2002)CrossRefPubMedGoogle Scholar
  68. 68.
    de Goeij, J.J.M., Bonardi, M.L., How to define the concepts specific activity, radioactive concentration, carrier, carrier-free and no-carrier-added? J Radioanal Nucl Chem. 263, 13–18 (2005)CrossRefGoogle Scholar
  69. 69.
    Bonardi, M.L., de Goeij, J.J.M., How do we ascertain specific activities in no-carrier-added radionuclide preparations? J Radioanal Nucl Chem. 263, 87–92 (2005)CrossRefGoogle Scholar
  70. 70.
    Mani, R.S. Reactor production of radionuclides for generators. Radiochim Acta. 41, 103–110 (1987)Google Scholar
  71. 71.
    Saey, P.R.J. The influence of radiopharmaceutical isotope production on the global radioxenon background. J Environ Radioact. 100, 396–406 (2009)CrossRefPubMedGoogle Scholar
  72. 72.
    Zhernosekov, K.P., Filosofov, D.V., Baum, R.P., Aschoff, P., Bihl, H., Razbash, A.A., Jahn, M., Jennewein, M., Rösch, F., Processing of generator produced 68 Ga for medical application. J Nucl Med. 48, 1741–1748 (2007)CrossRefPubMedGoogle Scholar
  73. 73.
    Pillai, M.R.A., Chakraborty, S., Das, T., Venkatesh, M., Ramamoorthy, N. Production logistics of 177Lu for radionuclide therapy. Appl Radiat Isot. 59, 109–118 (2003)CrossRefPubMedGoogle Scholar
  74. 74.
    Lebedev, N.A., Novgorodov, A.F., Misiak, R., Borckmann, J., Rösch, F., Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n, γ)177Lu process. Appl Radiat Isot. 53, 421–425 (2000)CrossRefPubMedGoogle Scholar
  75. 75.
    Canella, L., Bonardi, M.L., Groppi, F., Persico, E., Zona, C., Menapace, E., Alfassi, Z.B., Chinol, M., Papi, S., Tosi, G., Accurate determination of the half-life and radionuclidic purity of reactor produced 177gLu (177mLu) for metabolic radiotherapy. J Radioanalyt Nucl Chem. 276, 813–818 (2008)CrossRefGoogle Scholar
  76. 76.
    Palmer, M., Basic mechanisms of radiolabelling, in Sampson, C.B., ed., Textbook of radiopharmacy: theory and practice, 3rd ed. Gordon and Breach Science Publishers, Australia/Canada/China/France/Germany/India/Japan/Luxembourg/Malaysia/The Netherlands/Russia/Singapore/Switzerland, pp. 57–62 (1999)Google Scholar
  77. 77.
    Lindegren, S., Bäck, T., Jensen, H.J. Dry-destillation of astatine from irradiated bismuth targets: a time-saving procedure with high recovery yields. Appl Radiat Isot. 55, 157–160 (2001)CrossRefPubMedGoogle Scholar
  78. 78.
    Groppi, F., Bonardi, M.L., Birattari, C., Menapace, E., Abbas, K., Holzwarth, U., Alfarano, A., Morzenti, S., Zona, C., Alfassi, Z.B., Optimization study of α-cyclotron production of At-211/Po211g for high-LET metabolic radiotherapy purposes. Appl Radiat Isot. 63, 621–631 (2005)CrossRefPubMedGoogle Scholar
  79. 79.
    Holzwarth, U., Schaaff, P., Abbas, K., Schaub, W., Hansen-Ilzhöfer, Maier, K. Production of miniaturized 72Se∕72As positron generators for applications in materials science, in Proceedings 17th International Conference on Cyclotrons and Their Applications (CYCLOTRONS 2004), RIKEN, KEK, 18–22 October 2004, Tokyo, Japan (2004)Google Scholar
  80. 80.
    Skarnemark, G., Solvent extraction and ion exchange in radiochemistry, in Vértes, A., Nagy, S., Klencsár, Z., eds., Handbook of nuclear chemistry, Vol. 5, Chapter 7.9, Kluwer Academic, Dordrecht, Boston, London (2004)Google Scholar
  81. 81.
    Zona, C., Bonardi, M.L., Groppi, F., Morzenti, S., Canella, L., Persico, E., Menapace, E., Alfassi, Z.B., Abbas, K., Holzwarth, U., Gibson, N., Wet-chemistry method for the separation of no-carrier added 211At∕211gPo from 209Bi target irradiated by alpha-beam in cyclotron. J Radioanal Nucl Chem. 276, 819–824 (2008)CrossRefGoogle Scholar
  82. 82.
    Abbas, K., Kozempel, J., Bonardi, M., Groppi, F., Alfarano, A., Holzwarth, U., Simonelli, F., Hofman, H., Horstmann, W., Menapace, E., Leşetický, L., Gibson, N., Cyclotron production of 64Cu by deuteron irradiation of 64Zn. Appl Radiat Isot. 64, 1001–1005 (2006)CrossRefPubMedGoogle Scholar
  83. 83.
    Kozempel, J., Abbas, K., Simonelli, F., Zampese, M., Holzwarth, U., Gibson, N., and Leşetický, L., A novel method for n.c.a. 64Cu production by the 64Zn(d, 2p)64Cu reaction and dual ion-exchange column chromatography. Radiochim Acta. 95, 75–80 (2007)Google Scholar
  84. 84.
    Hess, E., Takács, S., Scholten, B., Tárkányi, F., Coenen, H.H., Qaim, S.M., Excitation function of the 18O(p, n)18F nuclear reaction from threshold up to 30 MeV. Radiochim Acta 89, 357–362 (2001)CrossRefGoogle Scholar
  85. 85.
    Lucignani, G., PET Imaging with hypoxia tracers: a must in radiation therapy. Eur J Nucl Med Mol Imaging. 35, 838–842 (2008)CrossRefPubMedGoogle Scholar
  86. 86.
    Stigbrand, T., Eriksson, D., Riklund, K., Johansson, L., Therapeutically used targeted antigens in radioimmunotherapy, in Stigbrand, T., Carlsson, J., Adams, G.P. eds., Targeted radionuclide tumor therapy – biological aspects. Springer Science + Business Media, New York, pp. 13–23 (2008)CrossRefGoogle Scholar
  87. 87.
    Bryan, R.A., Jiang, Z., Huang, X., Morgenstern, A., Bruchertseifer, F., Sellers, R., Casadevall, A., Dadachova, E., Radioimmunotherapy is effective against high-inoculum cryptococcus neoformans infection in mice and does not select for radiation-resistant cryptococcal cells. Antimicrob Agents Chemother. 53, 1679–1682 (2009)CrossRefPubMedGoogle Scholar
  88. 88.
    Dadachova, E., Patel, M.C., Toussi, S., Apostolidis, C., Morgenstern, A., Brechbiel, M.W., Gorny, M.K., Zolla-pazner, S., Casadevall, A., Goldstein, H., Targeted killing of virally infected cells by radiolabelled antibodies to viral proteins. PloS Med. 3, 2094–2103 (2006)CrossRefGoogle Scholar
  89. 89.
    Goetz, C., Riva, P., Poepperl, G., Gildehaus, F.J., Hischa, A., Tatsch, K., Reulen, H-J., Locoregional radioimmunotherapy in selected patients with malignant glioma: experiences, side effects and survival times. J Neuro-Oncol. 62, 321–328 (2003)Google Scholar
  90. 90.
    Wilbur, D.S., Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate binding. Bioconjug Chem. 3, 433–470 (1992)CrossRefPubMedGoogle Scholar
  91. 91.
    Adam, W.J., Wilbur, D.S., Radiohalogens for imaging and therapy. Chem Soc Rev. 34, 153–163 (2005)CrossRefPubMedGoogle Scholar
  92. 92.
    Bakker, W.H., Krenning, E.P, Reubi, J.C., Breeman, W.A., Setyono-Han, B., de Jong, M., Kooij, P.P., Bruns, C., van Hagen, P.M., Marbach, P., In vivo application of [111In-DTPA-D-Phe1]octreotide for detection of somatostatin receptor-positive tumours in rats. Life Sci. 49, 1593–1601 (1991)Google Scholar
  93. 93.
    Nowotnik, D.P., Verbruggen, A.M., Practical and physicochemical aspects of the preparation of 99mTc-labelled radiopharmaceuticals, in Sampson, C.B., ed., Textbook of radiopharmacy: theory and practice, 3rd ed. Gordon and Breach Science Publishers, Australia/Canada/China/France/Germany/India/Japan/Luxembourg/Malaysia/The Netherlands/Russia/Singapore/Switzerland, pp. 37–55 (1999)Google Scholar
  94. 94.
    DeNardo, G.L., DeNardo, S.J., Wessels, B.W., Kukis, D.L., Miyao, N., Yuan, A., 131I-Lym-1 in mice implanted with human Burkitts’s lymphoma (Raij) tumors: loss of tumour specificity due to radiolysis. Cancer Biother Radiopharm. 15, 547–560 (2000)CrossRefPubMedGoogle Scholar
  95. 95.
    Wahl, R.L., Wissing, J., del Rosario, R., Zasadny, K.R., Inhibition of autoradiolysis of radiolabelled monoclonal antibodies by cryopreservation. J Nucl Med. 31, 84–89 (1990)PubMedGoogle Scholar
  96. 96.
    Chakrabarti, M.C., Le, N., Paik, C.H., De Graff, W.G., Carrasquillo, J.A., Prevention of radiolysis of monoclonal antibody during labeling. J Nucl Med. 37, 1384–1388 (1996)PubMedGoogle Scholar
  97. 97.
    Liu, S., Ellars, C.E., Edwards, D.S., Ascorbic acid: useful as a buffer agent and radiolytic stabilizer for metalloradiopharmaceuticals. Bioconjug Chem. 14, 1052–1056 (2003)CrossRefPubMedGoogle Scholar
  98. 98.
    European Pharmacopoeia, ed. by Council of Europe, European Directorate for the Quality of Medicines (EDQM), Strasburg, France, 6th Edition 6.6 (2009)Google Scholar
  99. 99.
    Theobald, A.E., Quality control of radiopharmaceuticals, in Sampson, C.B., ed., Textbook of radiopharmacy: theory and practice, 3rd ed. Gordon and Breach Science Publishers, Australia/Canada/China/France/Germany/India/Japan/Luxembourg/Malaysia/The Netherlands/Russia/Singapore/Switzerland, pp. 145–186 (1999)Google Scholar
  100. 100.
    Keeling, D.H., Adverse reactions and untoward events associated with the use of radiophar- mapharmaceuticals, in Sampson, C.B., ed., Textbook of radiopharmacy: theory and practice, 3rd ed. Gordon and Breach Science Publishers, Australia/Canada/China/France/Germany/ India/Japan/Luxembourg/Malaysia/The Netherlands/Russia/Singapore/Switzerland, pp. 431–445 (1999)Google Scholar
  101. 101.
    Commission Directive 2003/94/EC of 8 October 2003 laying down the principles and guidelines of good manufacturing practice in respect of medicinal products for human use and investigational medicinal products for human use. Official J. L 262, 14/10/2003, pp. 22–26Google Scholar
  102. 102.
    EudraLex, The rules governing medicinal products in the European Union, Volume 4, EU guidelines to good manufacturing practice, medicinal products for human and veterinarian use; European Commission, Enterprise and Industry Directorate General (2008), http://ec.europa.eu/enterprise/pharmaceuticals/eudralex/eudralexen.htm
  103. 103.
    Council Directive 97/43/Euratom on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure. Official J. L 180, 09/07/1997, pp. 22–27Google Scholar
  104. 104.
    Council Directive 96/29/Euratom laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. Official J. L 159, 29/06/1996, pp. 1–114Google Scholar
  105. 105.
    Directive 2001/18/EC of the European Parliament and of the council of 12 March 2001 on the deliberate release into the environment of genetically modified microorganisms and repealing Council Directive 90/220/EEC. Official J. L 106, 17/4/2001, pp. 1–39Google Scholar
  106. 106.
    Training Course Series No. 1, G.E., Safe transport of radioactive material, 3rd ed., International Atomic Energy Agency, Vienna, Austria (2002)Google Scholar
  107. 107.
    IAEA Safety Standards Series No. TS-G-1.5, Compliance assurance for the safe transport of radioactive material – safety guide, International Atomic Energy Agency, Vienna, Austria (2009)Google Scholar
  108. 108.
    Directive 2001/83/EC of the European Parliament and the council of 6 November 2001 on the community code relating to medicinal products for human use. Official J. L 311, 28/11/2001, pp. 67–128 (consolidated version of 30/12/2008 and amended directives and regulations)Google Scholar
  109. 109.
    Regulation (EC) No 726/2004 of the European Parliament and the Council of 31 March 2004 laying down Community procedures for the authorization and supervision of medicinal products for human and veterinary use and establishing a European Medicines Agency. Official J. L, 30/4/2004, pp. 1–33 (consolidated version 20/4/2009)Google Scholar
  110. 110.
    Regulation (EC) No/1394/2007 of the European Parliament and of the council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation EC/726/2004, Official J. L 324, 10/12/2007, pp. 121–137Google Scholar
  111. 111.
    Council Regulation (EEC) No 2309/93 of 22 July 1993 laying down Community procedures for the authorization and supervision of medicinal products for human and veterinary use and establishing a European Agency for the Evaluation of Medicinal Products. Official J. L 214, 24/8/1993, pp. 1–21Google Scholar
  112. 112.
    Guideline of radiopharmaceuticals, Committee for Human Medicinal Products (CHMP), European Medicines Agency (2007), EMEA/CHMP/QWP/306970/2007Google Scholar
  113. 113.
    Perkins, A., Hilson, A., Hall, J., Global shortage of medical isotopes threatens nuclear medicine services. Brit Med J. 357, a1577 (2008)Google Scholar
  114. 114.
    Tolmachev, V., Carlsson, J., Lundqvist, H., A limiting factor for the progress of radionuclidebased cancer diagnostics and therapy. Acta Oncol. 43, 264–275 (2004)CrossRefPubMedGoogle Scholar
  115. 115.
    Nuclear Technology Review 2004, Annex I: research reactors, pp. 28–37. International Atomic Energy Agency, Vienna, Austria (2004)Google Scholar
  116. 116.
    International Atomic Energy Agency, Addressing the global shortage of beneficial radiation sources, Staff Report, 4 November 2008, http://www.iaea.org/NewsCenter/News/2008/resreactors.html
  117. 117.
    European Medicines Agency, Report to the European Commission on the supply shortage of radiopharmaceuticals (status as of 24 October 2008); London, 5 March 2009, EMEA/51183/2009Google Scholar
  118. 118.
    European Association of Nuclear Medicine; Press release 02/12/2008: Long term measures neededGoogle Scholar
  119. 119.
    European Medicines Agency, Public statement on the current shortage of radiopharmaceuticals in the European Union, London, 01/10/2008, EMEA/501698/2008Google Scholar
  120. 120.
    Preliminary draft report of the SNM Isotope Availability Task Group, Society of Nuclear Medicine, February 2009Google Scholar
  121. 121.
    Gould, P., Medical radioisotope shortage reaches crisis level. Nature. 460, 312–313 (2009)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.European Commission, Joint Research Centre, Institute for Health and Consumer ProtectionIspraItaly

Personalised recommendations