Advertisement

Principles of Monte Carlo Calculations and Codes

  • Alberto Fassò
  • Alfredo FerrariEmail author
  • Paola R. Sala
Chapter
  • 1.7k Downloads

Abstract

The Monte Carlo method was invented by John von Neumann, Stanislaw Ulam, and Nicholas Metropolis (who gave it its name) and independently by Enrico Fermi. Originally, it was not a simulation method but a mathematical approach aimed at solving a multidimensional integro-differential equation by means of a stochastic process. The equation itself did not necessarily refer to a stochastic process.

Keywords

Phase Space Boltzmann Equation Monte Carlo Code Phase Space Region Variance Reduction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kalos, M.H. and Whitlock, P.A. Monte Carlo Methods, 2nd edition, Wiley-VCH, Berlin (2008)CrossRefGoogle Scholar
  2. 2.
    Lux, I. and Koblinger, L. Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press, Boca Raton, FL (1990)Google Scholar
  3. 3.
    Carter, L.L. and Cashwell, E.D. Particle-Transport Simulation with the Monte Carlo Method, ERDA Critical Review Series, National Technical Information Service, Springfield, MA (1975)CrossRefGoogle Scholar
  4. 4.
    Hammersley, G.M. and Handscomb, D.C. Monte Carlo Methods, Wiley, New York (1964)Google Scholar
  5. 5.
    Spanier, J. and Gelbard, E.M. Monte Carlo Principles and Neutron Transport Problems, Addison-Wesley, Reading, MA (1969)Google Scholar
  6. 6.
    Pólya, G. Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem (in German) Math. Z. 8, 171–181 (1920)Google Scholar
  7. 7.
    Dupree, S.A. and Fraley, K. A Monte Carlo Primer, Kluwer/Plenum, New York (2002)Google Scholar
  8. 8.
    Marsaglia, G. and Tsang, W.W. The 64-bit universal RNG, Stat. Probabil. Lett. 66, 183–187 (2004)CrossRefGoogle Scholar
  9. 9.
    Matsumoto, M. and Nishimura, T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. S. 8, 3–30 (1998)CrossRefGoogle Scholar
  10. 10.
    Everett, C.J. and Cashwell, E.D. A Third Monte Carlo Sampler, Los Alamos Report LA-9721-MS (1983)Google Scholar
  11. 11.
    Biaggi, M., Ballarini, F., Burkard, W., Egger, E., Ferrari, A. and Ottolenghi, A. Physical and bio-physical characteristics of a fully modulated 72 Me V therapeutic proton beam: model predictions and experimental data, Nucl. Instrum. Meth. B159, 89–100 (1999)Google Scholar
  12. 12.
    Paganetti, H., Jiang, H. and Trofimov, A. 4D Monte Carlo simulation of proton beam scanning: modelling of variations in time and space to study the interplay between scanning pattern and time-dependent patient geometry, Phys. Med. Biol. 50, 983–990 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    Chudakov, A.E., Izv. Akad. Nauk SSSR, Ser. Fiz. 19, 650 (1955)Google Scholar
  14. 14.
    X-5 Monte Carlo Team MCNP: a general Monte Carlo N-particle transport code, Los Alamos Report No. LA-UR-03–1987 (2003)Google Scholar
  15. 15.
    Battistoni, G., Muraro, S., Sala, P.R., Cerutti, F., Ferrari, A., Roesler, S., Fassò, A. and Ranft, J. The FLUKA code: Description and benchmarking, Proceedings of the Hadronic Shower Simulation Workshop 2006, Fermilab 6–8 September 2006, M. Albrow, R. Raja eds., AIP Conference Proceeding 896, 31–49; (2007);Ferrari, A., Sala, P.R., Fassò, A. and Ranft, J. FLUKA: a multi-particle transport code, CERN-2005–10, INFN/TC_05/11, SLAC–R-773 (2005)Google Scholar
  16. 16.
    Berger, M.J. Monte Carlo calculation of the penetration and diffusion of fast charged particles, in Methods in Computational Physics, ed. B. Alder, S. Fernbach and M. Rotenberg (Academic Press, New York), Vol. 1, pp. 135–215 (1963)Google Scholar
  17. 17.
    Ferrari, A., Sala, P.R., Guaraldi, R., and Padoani, F. An improved multiple scattering model for charged particle transport, Nucl. Instrum. Meth. B71, 412–426 (1992)Google Scholar
  18. 18.
    Juzaitis, R.J. Minimizing the cost of splitting in Monte Carlo radiation transport simulation, Thesis, Los Alamos Report LA-8546-T (1980)Google Scholar
  19. 19.
    Booth, T.E. and Hendricks, J.S. Importance estimation in forward Monte Carlo calculations, Nucl. Technol. Fusion 5, 90 (1984)Google Scholar
  20. 20.
    Van Ginneken, A. AEGIS – a program to calculate the average behavior of electromagnetic showers, Fermilab-FN-309 (1978)Google Scholar
  21. 21.
    Galison, P. Computer simulations and the trading zone, in The Disunity of Science: Boundaries, Contexts, and Power, ed. P. Galison and P.J. Stump, Stanford University Press, Stanford (1996)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Alberto Fassò
    • 2
  • Alfredo Ferrari
    • 1
    Email author
  • Paola R. Sala
    • 3
  1. 1.European Laboratory for Particle Physics (CERN)MeyrinSwitzerland
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.INFN, Sezione di MilanoMilanItaly

Personalised recommendations