Advertisement

Mechanisms of the Interactions Between Radiation and Matter

  • Giuseppe BattistoniEmail author
Chapter
  • 1.7k Downloads

Abstract

In principle, electromagnetic interactions are exactly calculable by quantum electrodynamics. However, atomic and molecular physics introduce complexities that often eliminate the attempts of achieving an exact analytical formulation and require the introduction of approximantions or numerical approaches.

Keywords

Monte Carlo Calculation Atomic Electron Shell Correction Coulomb Scattering Charge Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fano, U., Penetration of protons, alpha particles and mesons, Ann. Rev. Nucl. Sci. 13,1–66 (1963).CrossRefGoogle Scholar
  2. 2.
    Inokuti, M., Inelastic collisions of fast charged particles with atoms and molecules – The Bethe theory revisited, Rev. Mod. Phys. 43, 297–347 (1971).CrossRefGoogle Scholar
  3. 3.
    International Commission on Radiation Units and Measurements, Stopping Powers for Electrons and Positrons, ICRU report 37 (1984).Google Scholar
  4. 4.
    Fermi, E., The ionization loss of energy in gases and in condensed materials, Phys. Rev. 57, 485–493 (1940).CrossRefGoogle Scholar
  5. 5.
    Sternheimer, R. M., The density effect for the ionization loss in various materials, Phys. Rev. 88, 851–859 (1952); Erratum: The density effect for the ionization loss in various materials, Phys. Rev. 89, 1309 (1953).Google Scholar
  6. 6.
    Sternheimer, R. M., Seltzer, S. M. and Berger, M. J., Density effect for the ionization loss of charge particles in various substances, Phys. Rev. B26, 6067–6076 (1982); Erratum, Phys. Rev. B27, 6971 (1983); At. Data Nucl. Data Tables 26, 261–271 (1984).Google Scholar
  7. 7.
    International Commission on Radiation Units and Measurements, Stopping Powers and Ranges for Protons and Alpha Particles, ICRU report 49 (1993).Google Scholar
  8. 8.
    Möller, C., Zur Theorie des Durchgangs schneller Elektronen durch Materie, Ann. Physik. 14, 531–585 (1932).CrossRefGoogle Scholar
  9. 9.
    Bhabha, H. J., The scattering of positrons by electrons with exchange on Dirac’s theory of electrons, Proc. Phys. Soc. A. 154, 195–196 (1965).Google Scholar
  10. 10.
    Emfietzoglou, D., Pathak, A., Papamichael, G., Kostarelos, K., Dhamodaran, S., Sathish, N., and Moskovitch, M., A study on the electronic stopping of protons in soft biological matter, Nucl. Instr. Meth. B242, 55–60 (2006); Paul, H., The ratio of stopping powers of water and air for dosimetry application in tumor therapy, Nucl. Instr. Meth. Phys. Res. B 256, 561–564 (2007).Google Scholar
  11. 11.
    Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, Oxford (UK) (1985).Google Scholar
  12. 12.
    Jackson, J. D. and McCarthy, R. L., z 3 corrections to energy loss and range, Phys. Rev. B6, 4131–4141 (1972).Google Scholar
  13. 13.
    Ziegler, J. F., Biersack, J. P., and Ziegler, M. D., SRIM the Stopping and Range of Ions in Matter (2008): see http://www.srim.org.
  14. 14.
    Ferrari, A., Sala, P. R., Fasso, A., and Ranft, J., FLUKA: a multi-particle transport code, CERN 2005–10, INFN/TC_05/11, SLAC-R-773 (2005); Battistoni, G., Muraro, S., Sala, P. R., Cerutti, F., Ferrari, A., Roesler, S., Fasso‘, A., and Ranft, J., The FLUKA code: Description and benchmarking, Proceedings of the Hadronic Shower Simulation Workshop 2006, Fermilab 6–8 September 2006, M. Albrow, R. Raja eds., AIP Conference Proceeding 896, 31–49 (2007).Google Scholar
  15. 15.
    Bimbot, R., Compilation, measurements and tabulation of heavy ion stopping data, Nucl. Instr. Meth. B69, 1–9 (1992).Google Scholar
  16. 16.
    Blunk, O. and Leisegang, S., Zum Energieverlust schneller Elektronen in dunnen Schichten, Z. Pjysick 128, 500–505 (1950).CrossRefGoogle Scholar
  17. 17.
    Bak, J. F., Bureknov, A., Petersen, J. B. B., Uggerhǿj, E., Mǿller, S. P., and Siffert, P., Large departure from Landau distributions for high energy particles traversing thin Si and Ge targets, Nucl. Phys. B. 288, 681–716 (1987).Google Scholar
  18. 18.
    Fasso, A., Ferrari, A., Sala, P. R., and Ranft, J., New developments in FLUKA modelling of hadronic and EM interactions, Proceedings of the SARE-3, KEK-Tsukuba, May 7–9 1997, H. Hirayama ed., KEK report Proceedings 97–5, 32–40 (1997).Google Scholar
  19. 19.
    Vavilov, P. V., Ionization losses of high-energy heavy particles, Sov. Phys. JEPT 5,749–751 (1957).Google Scholar
  20. 20.
    Molière, G., Theorie der Streuung schneller gelander Teilchen I: Einzelstreuung am abgeschirmten Coulomb-field, Z. Naturforsch. 2a, 133–145 (1947); Molière, G., Theorie der Streuung schneller gelander Teilchen II: Merfach- und Vielfachstreuung, Z. Naturforsch. 3a, 78–97 (1948).Google Scholar
  21. 21.
    Goudsmith, S., and Sanderson, J. L., Multiple scattering of electrons, Phys. Rev. 57, 24–29 (1940); Goudsmith, S. and Sanderson, J. L., Multiple scattering of electrons II, Phys. Rev. 58, 36–42 (1940).Google Scholar
  22. 22.
    Lewis, H. W., Multiple scattering in an infinite medium, Phys. Rev. 78, 526–529 (1950).CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.INFN, Sezione di MilanoMilanoItaly

Personalised recommendations